簡易檢索 / 詳目顯示

研究生: 葉星佑
Yeh, Hsing-Yu
論文名稱: 用於流量分類及網路入侵偵測的FPGA加速之深度學習框架
An FPGA-Accelerated Deep Learning Framework for Flow Classification and Network Intrusion Detection
指導教授: 張燕光
Chang, Yeim-Kuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 66
中文關鍵詞: 深度學習網路入侵偵測現場可程式化邏輯閘陣列特徵選擇超啟發式演算法流量分類AMD Vitis AICSE-CICIDS2018
外文關鍵詞: Deep learning, Network intrusion detection, feature selection, Vitis AI, flow classification, Field programmable Gate array, CSE-CICIDS2018, Metaheuristic algorithm
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii 誌謝 iv TABLE OF CONTENTS v LIST OF TABLES viii LIST OF FIGURES ix Chapter 1 Introduction 1 Introduction 1 Organization of the Thesis 3 Chapter 2 Background 4 2.1 Intrusion Detection 4 2.2 Artificial Intelligence 5 2.3 Flow Classification 6 2.4 Machine Learning 6 2.5 Signatured-Based Intrusion Detection System 8 2.6 Anomaly-based Intrusion Detection System 9 2.7 Intrusion Detection Dataset 10 2.7.1 Well-Known datasets 10 2.7.2 CICIDS2017, CSE-CICIDS2018, CICDDOS2019 11 2.8 Feature Selection 12 2.8.1 Information Gain 13 2.8.2 Dimensionality Reduction 13 2.8.3 Metaheuristic 14 2.9 Computation Resource 15 2.9.1 Central Processing Unit 16 2.9.2 Graphics Processing Unit 16 2.9.3 Neural Processing Unit 16 2.9.4 Tensor Processing Unit 17 2.9.5 Accelerated Processing Unit 17 2.9.6 Apple Silicon 18 2.9.7 Deep Learning Processing Unit 18 2.10 Embedded Deep Learning 19 2.10.1 Model Compression 19 2.10.1.1 Quantization 19 2.10.1.2 Pruning 20 2.10.1.3 Other Compression techniques 21 2.10.2 Tensor Virtual Machine 21 2.10.3 AMD Vitis™ AI 22 Chapter 3 Related Work 25 3.1 Feature Selection and Explanation Techniques 25 3.2 Neural Network Architectures 26 3.3 Efficient Neural Network Designs 27 3.4 FPGA-Based Deep Learning Acceleration 28 Chapter 4 Method 30 4.1 Motivation 30 4.2 Data Preprocess 31 4.3 Features Selection 32 4.3.1 Genetic Algorithm 32 4.4 Model Selection 32 4.4.1 Convolution Neural Network 33 4.4.2 ResNet34 34 4.4.3 Temporal Convolution Network 34 4.4.4 EfficientNetV2S 35 4.5 Model Adjustment for DPU Supported Operation 35 4.6 Train 36 4.7 Model Quantization 37 4.8 Model Compilation 37 4.9 Evaluate 38 4.10 Model Deployment on Zynq UltraScale+ MPSoC ZCU104 38 4.11 Performance Evaluation Across Heterogeneous Platforms 38 Chapter 5 Experimental Results 40 5.1 Experimental Environment 40 5.2 CSE-CICIDS2018 42 5.3 Models 45 5.4 Experimental Results Inference Metrics 47 Chapter 6 Conclusion 51 References 52

    [1]. Morgan, S. Cybercrime to Cost The World $10.5 Trillion Annually By 2025.(2016) https://cybersecurityventures.com/hackerpocalypse-cybercrime-report2016/
    [2]. AMD Technical Information Portal. DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide. (2023)
    [3]. AMD Vitis AI. https://www.xilinx.com/products/design-tools/ai-inference/vitisai.html (n.d.)
    [4]. Anderson, J. P. "Computer Security Threat Monitoring and Surveillance." (1980)
    [5]. Roesch, M. Snort: Lightweight intrusion detection for networks. (1988)
    [6]. D. E. Denning, "An Intrusion-Detection Model," in IEEE Transactions on Software Engineering, vol. SE-13, no. 2, Feb. (1987):222-232
    [7]. Mukkamala, S., Sung, A. H., & Abraham, A. "Intrusion detection using an ensemble of intelligent paradigms. " Journal of Network and Computer Applications, 28(2), (2005): 167–182
    [8]. Lazarevic, A., Ertöz, L., Kumar, V., Ozgur, A., Srivastava, J. "A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. " SDM. (2003)
    [9]. Liao, H., Lin, C. R., Lin, Y., & Tung, K. "Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, " 36(1), (2013):16–24
    [10]. Salvatore, S., et al. KDD Cup 1999 Data. UCI Machine Learning Repository. (1999)
    [11]. Haines, J., et al. 1999 DARPA Intrusion Detection Evaluation Dataset. MIT Lincoln Laboratory. (2000)
    [12].Sharafaldin, I., et al. "Toward generating a new intrusion detection dataset and intrusion traffic characterization." ICISSP, Portugal, January 2018
    [13]. Moustafa, N., Slay, J. "UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)." MilCIS, Canberra, ACT, Australia, (2015):1-6
    [14]. I. Sharafaldin, et al., "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th ICISSP, Portugal, January 2018
    [15]. M. Tavallaee, et al., "A detailed analysis of the KDD CUP 99 data set." CISDA, Ottawa, ON, Canada, (2009):1-6
    [16]. I. Sharafaldin, et al., "Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy." ICCST, Chennai, India, (2019):1-8
    [17]. Jouppi, N. P., et al., "In-datacenter performance analysis of a tensor processing unit. "ISCA, New York, NY, USA, (2017):1-12
    [18]. Chen, T., et al., "TVM: An automated end-to-end optimizing compiler for deep learning." OSDI 18, USA, (2018):578-594
    [19]. Ragan-Kelley, J., et al., "Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines." ACM SIGPLAN Notices, 48(6), New York, NY, USA, (2013):519-530
    [20]. Scott M. Lundberg, Su-In Lee., "A unified approach to interpreting model predictions." NIPS'17, Red Hook, NY, USA, (2017):4768–4777
    [21]. Younisse, R., et al., "Explaining intrusion detection-based convolutional neural networks using Shapley additive explanations (SHAP)." Big Data and Cognitive Computing, 6(4), 126. (2022)
    [22]. Izadi, S., Ahmadi, M., Nikbazm, R., "Analysis of feature selection methods for network traffic classification." AISI, Cairo, Egypt, (2022):65–77
    [23]. Thakkar, A., Holiya, R. "Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system." Information Fusion, 90, (2023):353-363
    [24]. R. G. Jimoh et al., "An enhanced deep neural network enabled with cuckoo search algorithm for intrusion detection in wide area networks." ITED, Abuja, Nigeria, (2022):1-5
    [25]. Bai, S., Kolter, J. Z., Koltun, V., "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271. (2018)
    [26]. Tan, M., Le, Q. V., "EfficientNet: Rethinking model scaling for convolutional neural networks." PMLR 97, Long Beach, California, USA, (2019): 6105-6114
    [27]. Sandler, M., et al., "MobileNetV2: Inverted residuals and linear bottlenecks." CVPR, (2018):4510-4520
    [28]. Tan, M., et al., "MNASNet: Platform-aware neural architecture search for mobile." CVPR, (2019):2820-2828
    [29]. Tummala, S.et al., "EfficientNetV2 Based Ensemble Model for Quality Estimation of Diabetic Retinopathy Images from DeepDRiD." Diagnostics, 13(4) (2023)
    [30]. Wang, W., et al., "Research on Algorithm for Authenticating the Authenticity of Calligraphy Works Based on Improved EfficientNet Network." Applied Sciences 14(1), (2024)
    [31]. Li, C., et al., "Edge real-time object detection and DPU-based hardware implementation for optical remote sensing images." Remote Sensing, 15(16), 3975., (2023)
    [32]. Bao, T. H. Q., et al., "A high-performance FPGA-based feature engineering architecture for intrusion detection system in SDN networks." ICIT, Vol. 148, Springer, Cham. (2022)
    [33]. Khandelwal, S., Shreejith, S., "A lightweight multi-attack CAN intrusion detection system on hybrid FPGAs." FPL, IEEE, Belfast, United Kingdom. (2022):425-429

    無法下載圖示 校內:2029-08-25公開
    校外:2029-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE