| 研究生: |
葉星佑 Yeh, Hsing-Yu |
|---|---|
| 論文名稱: |
用於流量分類及網路入侵偵測的FPGA加速之深度學習框架 An FPGA-Accelerated Deep Learning Framework for Flow Classification and Network Intrusion Detection |
| 指導教授: |
張燕光
Chang, Yeim-Kuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 深度學習 、網路入侵偵測 、現場可程式化邏輯閘陣列 、特徵選擇 、超啟發式演算法 、流量分類 、AMD Vitis AI 、CSE-CICIDS2018 |
| 外文關鍵詞: | Deep learning, Network intrusion detection, feature selection, Vitis AI, flow classification, Field programmable Gate array, CSE-CICIDS2018, Metaheuristic algorithm |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]. Morgan, S. Cybercrime to Cost The World $10.5 Trillion Annually By 2025.(2016) https://cybersecurityventures.com/hackerpocalypse-cybercrime-report2016/
[2]. AMD Technical Information Portal. DPUCZDX8G for Zynq UltraScale+ MPSoCs Product Guide. (2023)
[3]. AMD Vitis AI. https://www.xilinx.com/products/design-tools/ai-inference/vitisai.html (n.d.)
[4]. Anderson, J. P. "Computer Security Threat Monitoring and Surveillance." (1980)
[5]. Roesch, M. Snort: Lightweight intrusion detection for networks. (1988)
[6]. D. E. Denning, "An Intrusion-Detection Model," in IEEE Transactions on Software Engineering, vol. SE-13, no. 2, Feb. (1987):222-232
[7]. Mukkamala, S., Sung, A. H., & Abraham, A. "Intrusion detection using an ensemble of intelligent paradigms. " Journal of Network and Computer Applications, 28(2), (2005): 167–182
[8]. Lazarevic, A., Ertöz, L., Kumar, V., Ozgur, A., Srivastava, J. "A Comparative Study of Anomaly Detection Schemes in Network Intrusion Detection. " SDM. (2003)
[9]. Liao, H., Lin, C. R., Lin, Y., & Tung, K. "Intrusion detection system: A comprehensive review. Journal of Network and Computer Applications, " 36(1), (2013):16–24
[10]. Salvatore, S., et al. KDD Cup 1999 Data. UCI Machine Learning Repository. (1999)
[11]. Haines, J., et al. 1999 DARPA Intrusion Detection Evaluation Dataset. MIT Lincoln Laboratory. (2000)
[12].Sharafaldin, I., et al. "Toward generating a new intrusion detection dataset and intrusion traffic characterization." ICISSP, Portugal, January 2018
[13]. Moustafa, N., Slay, J. "UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set)." MilCIS, Canberra, ACT, Australia, (2015):1-6
[14]. I. Sharafaldin, et al., "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th ICISSP, Portugal, January 2018
[15]. M. Tavallaee, et al., "A detailed analysis of the KDD CUP 99 data set." CISDA, Ottawa, ON, Canada, (2009):1-6
[16]. I. Sharafaldin, et al., "Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy." ICCST, Chennai, India, (2019):1-8
[17]. Jouppi, N. P., et al., "In-datacenter performance analysis of a tensor processing unit. "ISCA, New York, NY, USA, (2017):1-12
[18]. Chen, T., et al., "TVM: An automated end-to-end optimizing compiler for deep learning." OSDI 18, USA, (2018):578-594
[19]. Ragan-Kelley, J., et al., "Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines." ACM SIGPLAN Notices, 48(6), New York, NY, USA, (2013):519-530
[20]. Scott M. Lundberg, Su-In Lee., "A unified approach to interpreting model predictions." NIPS'17, Red Hook, NY, USA, (2017):4768–4777
[21]. Younisse, R., et al., "Explaining intrusion detection-based convolutional neural networks using Shapley additive explanations (SHAP)." Big Data and Cognitive Computing, 6(4), 126. (2022)
[22]. Izadi, S., Ahmadi, M., Nikbazm, R., "Analysis of feature selection methods for network traffic classification." AISI, Cairo, Egypt, (2022):65–77
[23]. Thakkar, A., Holiya, R. "Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system." Information Fusion, 90, (2023):353-363
[24]. R. G. Jimoh et al., "An enhanced deep neural network enabled with cuckoo search algorithm for intrusion detection in wide area networks." ITED, Abuja, Nigeria, (2022):1-5
[25]. Bai, S., Kolter, J. Z., Koltun, V., "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling." arXiv preprint arXiv:1803.01271. (2018)
[26]. Tan, M., Le, Q. V., "EfficientNet: Rethinking model scaling for convolutional neural networks." PMLR 97, Long Beach, California, USA, (2019): 6105-6114
[27]. Sandler, M., et al., "MobileNetV2: Inverted residuals and linear bottlenecks." CVPR, (2018):4510-4520
[28]. Tan, M., et al., "MNASNet: Platform-aware neural architecture search for mobile." CVPR, (2019):2820-2828
[29]. Tummala, S.et al., "EfficientNetV2 Based Ensemble Model for Quality Estimation of Diabetic Retinopathy Images from DeepDRiD." Diagnostics, 13(4) (2023)
[30]. Wang, W., et al., "Research on Algorithm for Authenticating the Authenticity of Calligraphy Works Based on Improved EfficientNet Network." Applied Sciences 14(1), (2024)
[31]. Li, C., et al., "Edge real-time object detection and DPU-based hardware implementation for optical remote sensing images." Remote Sensing, 15(16), 3975., (2023)
[32]. Bao, T. H. Q., et al., "A high-performance FPGA-based feature engineering architecture for intrusion detection system in SDN networks." ICIT, Vol. 148, Springer, Cham. (2022)
[33]. Khandelwal, S., Shreejith, S., "A lightweight multi-attack CAN intrusion detection system on hybrid FPGAs." FPL, IEEE, Belfast, United Kingdom. (2022):425-429
校內:2029-08-25公開