簡易檢索 / 詳目顯示

研究生: 陳素足
Chen, Su-tsu
論文名稱: 管制圖在環境資料監測上的應用研究
Applying Control Charts for Monitoring Environmental Data
指導教授: 潘浙楠
Pan, Jeh-Nan
學位類別: 博士
Doctor
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 76
中文關鍵詞: 多變量舒華特累和管制圖自我迴歸移動平均部份整合模式多變量指數平滑與移動平均管制圖多變量累和管制圖自我迴歸移動平均整合模式單變量舒華特累和管制圖
外文關鍵詞: MEWMA charts, Shewhart-like CUSUM charts, ARFIMA, ARIMA, MCUSUM charts, SMCUSUM charts.
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業界常用統計管制圖作為監控製程穩定性的工具,近年來管制圖亦被應用於環境品質,如空氣品質及工業廢棄物污染的改善上。一般而言,當製程資料呈現自我相關時,使用傳統管制圖可能會導致誤判之狀況。因此,發展一種有別於傳統的特殊管制圖有其必要,雖然此種適合相關資料的單變量管制圖已廣受討論,但環境資料常呈現長期記憶(long memory)之特性,我們應該使用自我迴歸移動平均部份整合模式(ARFIMA),而非自我迴歸移動平均整合模式(ARIMA)去配適它。為了監控呈現長期記憶的環境資料,本論文提出使用ARFIMA模式的管制圖去監控呈自我相關的空氣品質資料。最後,我們以南台灣地區空氣品質資料比較使用ARFIMA模式與ARIMA模式在監控空氣品質之間的差異。結果顯示使用ARFIMA模式的殘差管制圖較使用ARIMA模式的殘差管制圖適當(可及早偵測出異常點)。
    至於多變量累和管制圖(MCUSUM)與多變量指數平滑與移動平均管制圖(MEWMA)則常用於偵測多變量製程的微量移動(small shift)上。不過,此種多變量管制圖皆假設製程服從常態分配,而並不符合現況。為了發展一個簡單而且實用的多變量管制圖,本論文提出了多變量舒華特累和管制圖(SMCUSUM)。SMCUSUM管制圖與單變量舒華特累和管制圖(Shewhart-like CUSUM)類似,其優點在於無需給定目標值與參數我們即可偵測製程的微量移動。模擬結果顯示SMCUSUM管制圖之偵測表現就平均串長度而言較MCUSUM管制圖與MEWMA管制圖均佳。
    由於多變量製程資料常呈現自我相關,因此模式選擇的正確與否會直接影響多變量製程監控的表現。我們以一組美國水文的資料為例,說明SMCUSUM管制圖可適用於監控多變量自我相關資料。實例分析結果顯示,SMCUSUM管制圖在偵測製程異常變動的表現亦較MCUSUM管制圖與MEWMA管制圖為佳。

    The statistical control chart is commonly used in industry to help ensure stability of the manufacturing process. It can also be used to monitor environmental quality; such as a change in air quality, industrial pollution, etc. When process data are autocorrelated, traditional control charts may lead to false results. Hence, nontraditional control charts are needed and this area has been widely discussed for the univariate case.
    Sometimes processes have not only short memory, but long memory as well. Instead of following the autoregressive integrated moving-average (ARIMA) models, these processes with long memory follow the so called fractionally integrated autoregressive moving-average (ARFIMA) models. In this thesis, a control chart for autocorrelated data using the ARFIMA model is proposed to monitor the longmemory air quality data. Finally, we use the air quality data for Taiwan to compare the difference between the ARFIMA and ARIMA models. The results show that
    residual control charts using the ARFIMA models are more appropriate than those using the ARIMA models.
    For multivariate processes, various control charts including the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average
    (MEWMA) charts were proposed to monitor small process shifts. However, the calculation of optimal parameters assume that the distribution of a manufacturing process is known. This may not be true in practice. In order to develop a simple yet practical multivariate control chart, a Shewhart-like multivariate CUSUM (SMCUSUM) control chart is proposed. Similar to the univariate Shewhart-like
    CUSUM chart, it has the advantage of detecting the small process shift without requiring target values and parameters. The results of our simulation study show that our proposed SMCUSUM chart outperforms the MEWMA and MCUSUM charts in terms of in-control and out-of-control ARLs.
    Similar to univariate processes, the data for multivariate processes may also be autocorrelated. Thus, choosing an appropriate model is also critical for monitoring autocorrelated processes. To demonstrate the application of SMCUSM chart to autocorrelated processes, an example of hydrological data is used to compare the
    performance of SMCUSUM, MEWMA, and MCUSUM charts. The results show that the SMCUSUM chart is more sensitive than MEWMA and MCUSUM charts.

    Contents 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Process Outputs are Correlated . . . . . . . . . . . . . . . . . . . . . 2 1.3 The Calculation of ARLs for Control Charts . . . . . . . . . . . . . . 3 1.4 Development of a Sensitive Multivariate Control Chart . . . . . . . . 4 2 Literature Review 6 2.1 Long Memory Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Hotelling’s T2 Control Chart . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 MCUSUM Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 MEWMA Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Shewhart-like CUSUM control chart . . . . . . . . . . . . . . . . . . 20 3 Development of Univariate Control Charts for Monitoring Long Memory Data 23 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 The Properties of Air Quality Data . . . . . . . . . . . . . . . . . . . 24 3.3 Development of Statistical Control Charts for Long Memory Data . . 27 3.4 Comparison of ARFIMA and ARIMA Models . . . . . . . . . . . . . 30 3.4.1 Example of Using the PM10 Data of Nantsz . . . . . . . . . . 30 3.4.2 Example of Using the PM10 data of Tsoying . . . . . . . . . . 35 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Development of a Shewhart-likeMultivariate CUSUMControl Chart 41 4.1 Development of Shewhart-like MCUSUM Control Charts . . . . . . . 42 4.1.1 SMCUSUM chart for individual observations (n = 1) . . . . . 43 4.1.2 SMCUSUM chart for multiple observations (n > 1) . . . . . . 48 4.2 Comparison of SMCUSUM and Other Multivariate Control Charts . 51 4.2.1 The Comparison of Detecting Performance of Various Multivariate Control Charts . . . . . . . . . . . . . . . . . . . . . . 54 4.3 Application of SMCUSUM Control Chart to Hydrological Data . . . 55 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Conclusions and Future Research 67

    Alwan, L. C. and Roberts, H. V. (1988). Time-Series Modeling for Statistical
    Process Control. Journal of Business & Economic Statistics,January, 6(1):87-
    95.
    Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis, 2nd
    edn, John Wiley, New York.
    Aparisi, F. and Garc´ı-D´ıaz, J. C. (2004). Optimization of Univariate and Multivariate
    Exponentially Weighted Moving-Average Control Charts. Computers
    & Operations Research, 31:1437-1454.
    Baillie, R. (1996). Long Memory Processes and Fractional Integration in Econometrics.
    Journal of Econometrics, 73:5-59.
    Beran, J. (1994). Statistics for Long-Memory Processes, Chapman & Hall, New
    York.
    Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Methods,
    Springer-Verlag, New York.
    Bodden, K. M. and Rigdon, S. E. (1999). A Program for Approximating the
    In-Control ARL for the MEWMA Chart. Journal of Quality Technology,
    31(1):120-123.
    Bodnar, O. and Schmid, W. (2005). Multivariate Control Charts Based on a
    Projection Approach. Allgemeines Statistisches Archiv, 89:75-93.
    Borror, C. M.; Montgomery, D. C. and Runger, G. C. (1999). Robustness of
    the EWMA Control Chart to Non-normality. Journal of Quality Technology,
    31(3):309-316.
    Caballero, R.; Jewson, S. and Brix, A. (2002). Long Memory in Surface Air Temperature:
    Detection, Modeling, and Application to Weather Derivative Valuation.
    Climate Research, 21(2): 127-140.
    Chan, C. C. and Hwang, J. S. (1996). Selling The Blue Skies: Some Reflection
    on Air Pollution Fee Policy in Taiwan. Journal of the Chinese Institute of
    Environmental Engineering, 6:235-246.
    Chang, Y. S. and Bai, D. S. (2001). Median Control Charts for Skewed Populations.
    Asia Pacific Management Review, 6(2):211-246.
    Corbett, C. and Pan, J. N. (2002). Evaluating Environmental Performance Using
    Statistical Process Control Techniques. European Journal of Operational
    Research, 139(1):68-83.
    Crosier, R. B. (1988). Multivariate Generalizations of Cumulative Sum Quality
    Control Schemes. Technometrics, 30:291-303.
    Crowder, S. V. (1987a). A Simple Method for Studying Run-length Distributions of
    Exponentially Weighted Moving Average Charts. Technometrics, 29:401-407.
    ———(1987b). Average Run Lengths of Exponentially Weighted Moving Average
    Control Charts. Journal of Quality Technology, 19:161-164.
    DeVor, R. E.; Chang, T. H.; and Sutherland, J. W. (1992). Statistical Quality
    Design and Control , Macmillan Publishing, New York, NY.
    Faltin, F. W.; Mastrangelo, C. M. and Runger, G. C. (1997). Considerations in
    the Monitoring of Aautocorrelated and Independent Data. Journal of Quality
    Technology, 29(2):131-133.
    Fass`o, A. (1999). One-SidedMEWMA Control Charts. Communications in Statistics-
    Simulation and Computation, 28(2):381-401.
    Fu, J. C.; Spiring, F. A. and Xie, H. (2002). On the Average Run Lengths of Quality
    Control Schemes Using a Markov Chain Approach. Statistics & Probability
    Letters, 56:369-380.
    Galeano, P. and Pe˜na, D. (2007). Covariance Changes Detection in Multivariate
    Time Series. Journal of Statistical Planning and Inference, 137(1):194-211.
    Granger, C. W. J. and Joyeux, R. (1980). An Introduction to Long-Memory Time
    Series Models and Fractional Differencing. Journal of Time Series Analysis,
    1:15-29.
    Hipel, K. W. and McLeod, A. I. (1994). Time Series Modelling of Water Resources
    and Environmental Systems, Elsevier, Amsterdam, the Netherland.
    Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68:165-176.
    Hunter, J. S. (1986). The Exponentially Weighted Moving Average. Journal of
    Quality Technology, 18:203-210.
    Hurst, H. E. (1951). Long-Term Storage Capacity of Reservoirs. Transactions of
    the American Society of Civil Engineers, 116:770-799.
    Hussain, S. and Elbergali, A. (1999). Fractional Order Estimation and Testing,
    Application to Swedish Temperature Data. Environmetrics, 10(3):339-349.
    Hussain, S.; Elbergali, A.; Al-Masri, A. and Shukur G. (2004). Parsimonious
    Modelling, Testing and Forecasting of Long-Range Dependence inWind Speed.
    Environmetrics, 15(2):155-171.
    Jensen, D. R. (1970). The Joint Distribution of Quadratic Forms and Related
    Distributions. Australian Journal of Statistics, 12:13-22.
    Kan, H. D.; Chen, B. H.; Fu, C. W.; Yu, S. Z. and Mu, L. N. (2005). Relationship
    Between Ambient Air Pollution and Daily Mortality of SARS in Beijing.
    Biomedical and Environmental Sciences, 18(1):1-4.
    Khoo, M. B. C. (2004). Increasing the Sensitivity of Multivariate EWMA Control
    Chart. Quality Engineering, 16(1):75-85.
    Khoo, M. B. C. and Quah, S. H. (2002). Computing the Percentage Points of the
    Run-Length Distributions of Multivariate CUSUM Control Charts. Quality
    Engineering, 15(2):299-310.
    Kim, K. and Reynolds, M. R. (2005). Multivariate Monitoring Using an MEWMA
    Control Chart With Unequal Sample Sizes. Journal of Quality Technology,
    37:267-281.
    Kramer, H. and Schmid, W. (1997). EWMA Charts for Multivariate Time Series.
    Sequential analysis, 16(2):131-154.
    Kuei, C. H. and Madu, C. N. (2001). Identifying Critical Success Factors for Supply
    Chain Quality Management. Asia Pacific Management Review, 6(4):211-246.
    Lee, M. H. and Khoo, M. B. C. (2006a). Optimal Statistical Designs of a Multivariate
    CUSUM Chart Based on ARL and MRL. International Journal of
    Reliability, Quality and Safety Engineering, 13(5):479-497.
    ———(2006b). Optimal Statistical Design of a Multivariate EWMA Chart Based
    on ARL and MRL. Communications in Statistics-Simulation and Computa-
    tion, 35:831-847.
    Linderman, K. and Love, T. E.(2000a). Economic and Economic Statistical Designs
    for MEWMA Control Charts. Journal of Quality Technology, 32(4):410-417.
    ———(2000b). Implementing Economic and Economic Statistical Designs for
    MEWMA Charts. Journal of Quality Technology, 32(4): 457-463.
    Liu, Y. M. (1996). An Improvement for MEWMA in Multivariate Process Control.
    Computer & Industrial Engineering, 31:779-781.
    Love, T. E. and Linderman, K. (2003). A Weibull Process Failure Mechanism for the Economic Design of MEWMA Control Charts. Journal of statistical
    computation and simulation, 73(3):195-202.
    Lowry, C. A. and Montgomery, D. C. (1995). A Review of Multivariate Control
    Charts. IIE Transactions, 27:800-810.
    Lowry, C. A.; Woodall, W. H.; Champ, C. W.; and Rigdon, S. E. (1992). A
    Multivariate Exponentially Weighted Moving Average Control Chart. Tech-
    nometrics, 34(1):46-53.
    Lu, C. W. and Reynolds, M. R., Jr. (1999a). Control Charts for Monitoring the
    Mean and Variance of Autocorrelated Processes. Journal of Quality Technol-
    ogy, 31(3):259-274.
    ———(1999b). EWMA Control Charts forMonitoring theMean of Autocorrelated
    Process. Journal of Quality Technology, 31(2):166-188.
    ———(2001). CUSUM Charts for Monitoring an Autocorrelated Process. Journal
    of Quality Technology, 33(3):66-81.
    Lucas, J. M. and Saccucci, M. S. (1990). Exponentially Weighted Moving Average
    Control Schemes: Properties and Enhancements. Technometrics, 32(1):1-12.
    Madu, C. N. (1996). Managing Green Technologies for Global Competitiveness.
    Quorum Books, Westport, CT.
    Mathai, A.M. and Provost. S. B. (1992). Quadratic Forms in Random Variables:
    Theory and Applications, M. Dekker, New York.
    Mindell, J. and Joffe, M. (2004). Predicted Health Impacts of Urban Air Quality
    Management. Journal of Epidemiology and Community Health, 58(2):103-113.
    Molnau, W. E.; Runger, G. C.; Montgomery, D. C.; Skinner, K. R.; Loredo, E. N.;
    and Prabhu, S. S. (2001). A Program for ARL Calculation for Multivariate
    EWMA Charts. Journal of Quality Technology, 33(4):515-521.
    Molnau, W. E.; Montgomery, D. C.; and Runger, G. C. (2001). Statistically Constrained
    Economic Design of the Multivariate Exponentially Weighted Moving
    Average Control Chart. Quality and Reliability Enngineering International ,
    17:39-49.
    Montgomery, D. C. (2005). Introduction to statistical quality control , 5nd edn,
    John Wiley, New York.
    Ngai, H. M. and Zhang, J. (2001). Multivariate Cumulative Sum Control Charts
    Based on Projection Pursuit. Statistica Sinica, 11:747-766.
    Noorossana, R. and Vaghefi, S. J. M. (2006). Effect of Autocorelation on Performance
    of the MCUSUM Control Chart. Quality and Reliability Engineering
    International , 22(2):191-197.
    Pan, J. N. (2007). A Study of Multivariate Pre-Control Charts. International
    journal of production Economics, 105:160-170.
    Pan, J. N. and Chen, B. D. (2004). The Comparison of Environmental Control
    Charts for Monitoring Autocorrelated Air Pollution Data in Taipei Area.
    Journal of The Chinese Statistical Association, 42(1): 31-62.
    Pan, J. N. and Chen, S. T. (2007). Monitoring Long-Memory Air Quality Data
    Using ARFIMA Model. Environmetrics , 19(2):209-219.
    Pan, X. (2005). An Alternative Approach to Multivariate EWMA Control Chart.
    Journal of Applied Statistics, 32(7):695-705.
    Pignatiello, J. J. Jr. and Runger, G. C. (1990). Comparisons of Multivariate
    CUSUM Charts. Journal of Quality Technology, 22(3):173-186.
    Prabhu, S. S. and Runger, G. C. (1997). Designing a Multivariate EWMA Control
    Chart. Journal of Quality Technology, 29(1):8-15.
    Qiu, P. and Hawkins, D. (2001). A Rank-Based Multivariate CUSUM Procedure.
    Technometrics, 43(2):120-132.
    Qiu, P. and Hawkins, D. (2003). A Nonparametric Multivariate CUSUM Procedure
    For Detecting Shifts In All Directions. Journal of the Royal Statistical Society
    Series D-The Statistician, 52:15-164.
    Rao, B. V.; Disney, R. L. and Pignatiello, J. J. (2001). Uniqueness and Convergence
    of Solutions to Average Run Length Integral Equations for Cumulative Sum
    and Other Control Charts. IIE Transactions, 33(6):463-469.
    Reynolds, M. R. and Kim, K. (2005). Multivariate Monitoring of the Process Mean
    Vector With Sequential Sampling. Journal of Quality Technology, 37(2):149-
    162.
    Reynolds, M. R. and Cho, G. Y. (2006). Multivariate Control Charts for Monitoring
    the Mean Vector and Covariance Matrix. Journal of Quality Technology,
    38:230-253.
    Rigdon, S. E. (1995a). A Double-Integral Equation for the Average Run-Length of
    a Multivariate ExponentiallyWeighted Moving Average Control Chart. Statis-
    tics & Probability Letters, 24:365-373.
    ———(1995b). An Integral Equation for the In-Control Average Run Length of a
    Multivariate Exponentially Weighted Moving Average Control Chart. Journal
    of Statistical Computation and Simulation, 52:351-365.
    Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages.
    Technometrics, 1:239-250.
    Runger, G. C.; Keats, J. B.; Montgomery, D. C.; and Scranton, R. D. (1999).
    Improving the Performance of the Multivariate Exponentially Weighted Moving
    Average Control Chart. Quality and Reliability Engineering International ,
    15:161-166.
    Runger, G. C. and Prabhu, S. S. (1996). A Markov Chain Model for the Multivariate
    Exponentially Weighted Moving Average Control Chart. Journal of the
    American Statistical Association, 91(436):1701-1706.
    Runger, G. C. and Testik, M. C. (2004). Multivariate Extensions to Cumulative
    Sum Control Charts. Quality and Reliability Engineering International ,
    20(6):587-606.
    Samet, J. M.; Dominici, F.; McDermott, A. and Zegert, S. L. (2003). New Problems
    for an Old Design: Time Series Analyses of Air Pollution and Health.
    Epidemiology, 14(1):11-12.
    Saraie, A. (2007). Economic-Statistical Design of MC1 Control Charts. The In-
    ternational Journal of Advanced Manufacturing Technology, 32(1-2):157-161.
    Schwartz, J, and Marcus, A. (1990). Mortality and Air Pollution in London: a
    Time Series Analysis. American Journal of Epidemiology, 131(1):185-194.
    Scranton, R.; Runger, G. C.; Keats, J. B. and Montgomery, D. C. (1996). Efficient
    Shift Detection Using Multivariate Exponentially-Weighted Moving Average
    Control Charts and Principal Components. Quality and reliability engineering
    international , 12(3):165-171.
    Stieb, D. M.; Judek, S. and Burnett, R. T. (2002). Meta-Analysis of Time-Series
    Studies of Air Pollution and Mortality: Effects of Gases and Particles and the
    Influence of Cause of Death, Age, and Season. Journal of the Air & Waste
    Management Association, 52:470-484.
    Stoumbos, Z. G. and Sullivan, J. H. (2002). Robustness to Non-Normality of the
    Multivariate EWMA Control Chart. Journal of Quality Technology, 34(3):260-
    276.
    T`ellez-Rojo, M. M.; Romieu, I.; Ruiz-Velasco, S.; Lezana, M. A. and Hern`andez-
    Avila, M. M. (2000). Daily Respiratory Mortality and PM10 Pollution in
    Mexico City: Importance of Considering Place of Death. European Respiratory
    Journal , 16:391-396.
    T`ellez-Rojo, M. M.; Romieu, I.; Ruiz-Velasco, S. and Hern`andez-Avila, M. M.
    (2001). Daily Respiratory Mortality and PM10 Pollution in Mexico City. Eu-
    ropean Respiratory Journal , 18:1076-1076.
    Testik, M. C. and Borror, C. M. (2004). Design Strategies for the Multivariate Exponentially
    Weighted Moving Average Control Chart. Quality and Reliability
    Engineering International , 20(6):571-577.
    Testik, M. C.; Runger, G. C.; and Borror, C. M. (2003). Robustness Properties
    of Multivariate EWMA Control Charts. Quality and Reliability Engineering
    International , 19:31-38.
    Wang, C. L. (2002). Statistical Control Charts of I(d) processes. Masters Thesis,
    National Sun Yat-Sen University.
    Wei, W. W. S. (1990). Time Series Analysis: Univariate and Department of Ap-
    plied Mathematics Multivariate Methods, Addison-Wesley, Redwood City.
    Welty, L. J. and Zeger, S. L. (2005). Are the Acute Effects of Particulate Matter on
    Mortality in the National Morbidity, Mortality, and Air Pollution Study the
    Result of Inadequate Control for Weather and Season? A Sensitivity Analysis
    Using Flexible Distributed Lag Models. American Journal of Epidemiology,
    162(1):80-88.
    Yeh, A. B.; Huwang, L.; and Wu, C. W. (2005). A Multivariate EWMA Control
    Chart for Monitoring Process Variability with Individual Observations. IIE
    Transactions, 37:1023-1035.
    Yeh, A. B.; Lin, D. K. J.; Zhou, H. H.; and Venkataramani, C. (2003). A Multivariate
    Exponentially Weighted Moving Average Control Chart for Monitoring
    Process Variability. Journal of Applied Statistics, 30(5):507-536.
    Zhang, N. F. (1997). Detection Capability of Residual Control Chart for Stationary
    Process Data. Journal of Applied Statistics, 24(4):475-492.
    ———(1998). A Statistical Control Chart for Stationary Process Data. Techno-
    metrics, 40(1):24-38.
    ———(2000). Statistical Control Charts for Monitoring the Mean of a Stationary
    Process. Journal of Statistical Computation & Simulation, 66(3):249-258.

    下載圖示 校內:2011-08-12公開
    校外:2011-08-12公開
    QR CODE