簡易檢索 / 詳目顯示

研究生: 張耕輔
Chang, Keng-Fu
論文名稱: 以噴覆成型法製備非晶質/奈米結晶Mg-Cu-Gd合金及其性質之研究
Properties of amorphous/nanocrystalline Mg-Cu-Gd alloys via spray forming
指導教授: 曹紀元
Tsao, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 96
中文關鍵詞: 噴覆成型機械性質玻璃形成能力非晶質鎂合金
外文關鍵詞: spray-forming, glass forming ability, Amorphous Mg alloys, mechanical properties
相關次數: 點閱:128下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以噴覆成型設備,製造出形狀為高斯分佈之Mg - Cu - Gd 、Mg58Cu31Gd11、Mg65Cu25Gd10合金之圓板狀材料。並且分析材料的結晶性質,成份變化,熱性質,以及機械性質。
    利用X光繞射儀器(XRD)以及穿透式電子顯微鏡(TEM)鑑定板材之結晶特性。結果顯示Mg - Cu - Gd與Mg58Cu31Gd11合金板材為部份結晶與非晶共存之結構;Mg65Cu25Gd10之合金板材則為完全非晶質之結構,最大厚度可達11mm。
    經電子微探儀(EPMA)之背向式散射電子影像(BEI)觀察成份變化,由結果可知未導入熔湯攪拌機制下所製作出來的Mg - Cu - Gd板材,具有明顯的成份偏析現象;而在加入熔湯攪拌機制下所製作出來的Mg58Cu31Gd11、Mg65Cu25Gd10合金板材之成份則較為均勻。再經由二次電子影像(SEI)觀察合金板材的孔隙率之變化,結果顯示利用噴覆成型所製作之板材,在靠近基板以及自由表面處具有較高的孔隙率,而在中間區域則具有較低的孔隙率。孔隙率之分佈亦影響塊材局部區域之硬度,一般而言孔隙率愈高之區域,材料之平均硬度值略低。
    熱性質以熱差分析儀(DSC)量測材料的玻璃轉換溫度(Tg)、結晶溫度(Tx)、固相限溫度(Tm)以及液相限溫度(Tl)。並且計算板材在各部位之非晶質形成能力(GFA):△Tx及△Tl、γ、γm。由於Mg - Cu - Gd與Mg58Cu31Gd11合金的結晶性質隨著塊材的位置而呈現變化,因此所量測的熱性質亦隨之而改變;在Mg65Cu25Gd10的合金板材中,其熱性質則較為均勻,材料平均之△Tx = 65 K、Tl = 41 K 、γ= 0.44、γm = 0.75。
    各板材之機械性質以微硬度計進行壓痕試驗,計算材料在各區域之MHV值。Mg65Cu25Gd10之板材利用萬能試驗機測試材料分別在三種應變速率(5 x 10-2 s-1, 5 x 10-3 s-1, 5 x 10-4 s-1 )下進行室溫壓縮試驗以求得室溫壓縮強度。並比較以熱壓成型(Tg < T < Tx)將材料緻密化後,進行室溫壓縮試驗。最後利用奈米壓縮試驗(Nanoindentation)測試材料之楊氏係數(E)以及硬度。

    Properties of crystalline, deviation of composition, thermal stability, and mechanical properties will be discussed in the thesis in which the Gaussian - shaped plate of Mg - Cu - Gd, Mg58Cu31Gd11 and Mg65Cu25Gd10 were produced by spray - forming.
    The result of XRD and TEM showed that the microstructure of Mg - Cu - Gd and Mg58Cu31Gd11 plate was partially amorphous structure, however, it was fully amorphous structure in Mg65Cu25Gd10 plate with maximum thickness 11mm.
    Composition deviation was found in the different region of Mg - Cu- Gd plate by the BEI of EPMA during the re - melting process without the mixing mechanism, however, it was uniform in Mg58Cu31Gd11 and Mg65Cu25Gd10 plate with mixing mechanism. Through the SEI of EPMA, we could find the porosity level near the substrate and free surface was higher than the middle region. Generally speaking, the higher porosity the lower microhardness.
    Thermal properties (Tg, Tx, Tm, Tl) was measured by DSC and the GFA (△Tx, △Tl, γ, γm) will be calculated. The crystallinity and thermal properties of Mg - Cu - Gd and Mg58Cu31Gd11 plate were varied with position, however, these properties were uniform in Mg65Cu25Gd10 plate with average values: △Tx = 65 K, Tl = 41 K, γ= 0.44, γm = 0.75.
    The mechanical property of the deposit plate in various regions was tested by micro Vickers (MHV) hardness tester at a load of 300g and a dwelling time of 15s. The compression strength of the Mg65Cu25Gd10 plate was measured by Shimadzu universal testing at 3 strain rate (5 x 10-2 s-1, 5 x 10-3 s-1, 5 x 10-4 s-1). Besides, the Mg65Cu25Gd10 sample will be densified by hot pressing (Tg < T < Tx), after that, the compression testing will also be done. Finally, the Young’s modulus and hardness of Mg65Cu25Gd10 plate were measured by nanoindentation.

    目錄---------------------------------------------------------------------------------- I 表目錄------------------------------------------------------------------------------- V 圖目錄------------------------------------------------------------------------------ -VII 符號-----------------------------------------------------------------------------------XIII 中文摘要---------------------------------------------------------------------------XV 英文摘要---------------------------------------------------------------------------XVII 第一章 前言 1 1-1噴覆成型製程之優點 1 1-2製作非晶質塊材/奈米晶金屬塊材 3 第二章 文獻回顧及理論基礎 4 2-1塊狀非晶質鎂合金之發展歷史 4 2-2塊狀非晶質合金製備方法 5 2-2-1薄帶製作 5 2-2-2棒材製作方式 6 2-2-3 板狀以及粉末材料製作方式 7 2-2-3-1噴覆成型製程原理 7 2-2-3-2霧化及沈積過程結晶相與非晶相之形成 8 2-4非晶質合金之基本性質 9 2-4-1形成非晶質合金之要件 9 2-4-2玻璃形成能力 (Glass Forming Ability,GFA) 10 2-4-3非晶質合金的孕核以及結晶過程 12 2-5非晶質合金特色 12 第三章 實驗方法及步驟 15 3-1材料製備 15 3-1-1電弧熔煉製備Cu - Gd合金 15 3-1-2 Mg - Cu - Gd、Mg58Cu31Gd11、Mg65Cu25Gd10合金鑄錠製作 16 3-2噴覆成型製備塊狀Mg - Cu - Gd、Mg58Cu31Gd11、Mg65Cu25Gd10合金 16 3-2-1氣體混合架構簡介 16 3-2-2噴覆成型製程 (Spray forming process) 16 3-3試片製備方案 17 3-4 性質量測及分析 19 3-4-1材料成份量測 19 3-4-2DSC熱性質分析 19 3-4-3 X-ray繞射結構分析及穿透式電子顯微鏡(TEM)之相鑑定 20 3-4-4顯微結構觀察 20 3-4-5微硬度試驗(Micro-hardness of Vickers indentation) 21 3-4-6 M65Cu25Gd10壓縮試驗(Compression Test) 21 3-4-7 M65Cu25Gd10奈米壓縮測試(Nanoindentation) 22 第四章 結果與討論 23 4-1 合金成份討論 23 4-1-1 Mg - Cu - Gd 23 4-1-2 Mg58Cu31Gd11 and Mg65Cu25Gd10 23 4-2 DSC熱性質分析 24 4-2-1 Mg - Cu - Gd 24 4-2-2 Mg58Cu31Gd11 and Mg65Cu25Gd10 25 4-3 X - ray / TEM晶體結構分析 25 4-3-1 Mg - Cu - Gd 25 4-3-2 Mg58Cu31Gd11 26 4-3-3 Mg65Cu25Gd10 27 4-4 SEM / EPMA材料表面型態分析 28 4-4-1 Mg - Cu - Gd 28 4-4-2 Mg58Cu31Gd11 28 4-4-3 Mg65Cu25Gd10 29 4-5 微硬度測試 29 4-5-1 Mg - Cu - Gd 29 4-5-2 Mg58Cu31Gd11 30 4-5-3 Mg65Cu25Gd10 31 4-6 Mg65Cu25Gd10壓縮測試 32 4-6-1 = 5 x 10-2 s-1 32 4-6-2 = 5 x 10-3 s-1 33 4-6-3 = 5 x 10-4 s-1 33 4-7 Mg65Cu25Gd10塊材緻密化實驗 35 4-7-1 HR - SEM表面型態分析 35 4-7-2 壓縮測試( = 5 x 10-4 s-1) 36 4-8 奈米壓縮測試 38 第五章 結論 40 參考資料 44 表格 47 圖形 54

    [1]W. Klement, R. H. Willens and P. Duwez: Nature, 187(1960), p869.
    [2]Akihisa Inoue, Acta mater., 48(2000), pp. 279-306.
    [3]Inoue, A., Ohtera, K., Kita, K. and Masumoto, T.,Japan. J. appl. Phys., 27(1988), L2248.
    [4]Inoue, A., Zhang, T. and Masumoto, T., Mater.Trans. Japan. Inst. Metals, 30(1989), p965.
    [5]Peker, A. and Johnson, W. L., Appl. Phys. ,Lett.,63(1993), p2342.
    [6]Inoue, A., Zhang, T., Itoi, T. and Takeuchi, A.,Mater. Trans. Japan. Inst. Metals, 1997, 38, 359.
    [7]Inoue, A., Nishiyama, N. and Matsuda, T., Mater.Trans. Japan. Inst. Metals, 1996, 37, 181.
    [8]A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, JIM33(1992), p937.
    [9]H. Men , W.T. Kim , D.H. Kim, J. Non-Cryst., Solids, 337(2004), pp.29-35.
    [10]G. Yuan, A. Inoue, J. Alloys Compd., 387 (2005) pp.134.
    [11]G.Y. Yuan, K. Amiya, A. Inoue, J. Non-Cryst. Solids, 351(2005), 729.
    [12]Q. Zheng, S. Cheng, J.H. Strader, E. Ma, J. Xu, Scripta Mater., 56(2007), pp.161-164.
    [13]Guangyin Yuan, Akihisa Inoue, J. Alloys Compd., 387(2005), pp.134-138.
    [14]G. Yuan, A. Inoue, J. Alloys Compd., 387(2005), pp.134.
    [15]E.S. Park, J.Y. Lee, D.H. Kim, J. Mater. Res., 20(2005) 2379.
    [16]G.Y. Yuan, C.L. Qin, A. Inoue, J. Mater. Res., 20 (2005), pp.394.
    [17]J.S.C. Jang, C.C. Tseng, L.J Chang, C.F. Chang, W.J. Lee, J.C. Huang, C.T. Liu, Mater.Trans., Vol. 48, no. 7, pp. 1684-1688. July 2007
    [18]Chang, L J; Fang, G R; Jang, J S C; Lee, I S; Huang, J C; Tsao, Chi Y A; Jou, J L, Materials Transactions. Vol. 48, no. 7, pp. 1797-1801. July 2007
    [19]吳學陞, 工業材料, 149(1999), pp.154-165.
    [20]H. Lefebbre, "Atomization and Sprays", Hemisphere Publishing Corporation, (1989), p37
    [21]Guo, M.L. Ted, Chi Y.A. Tsao, J. C. Huang, and J. S.C. Jang, Intermetallics, 2006, 14 (8-9): 1069-1074.
    [22]C.R.M. Afonso, C. Bolfarini, C.S. Kiminami, N.D. Bassim, M.J. Kaufman, M.F. Amateau, T.J. Eden and J. M. Galbraith, Scripta mater., 44(2001), pp.1625-1628.
    [23]M.L. Ted Guo, Chi Y.A. Tsao, J.C. Huang, J.S.C. Jang, Mater. Sci. & Eng. A 404(2005), pp.49-56.
    [24]Hajime Tanaka, J. Non-Cryst. Solids, 351(2005), pp.678-690.
    [25]Z. P. Lu, C. T. Liu, Acta Mater. 50(2002), p3501.
    [26]X. H. Du, J. C. Huang, C. T. Liu, J. Appl. Phys., 101(2007), p086108
    [27]龔榮豪,”噴覆成型製程製備鎂銅釔塊狀金屬玻璃及其性質之研究”,2006國立成功大學材料科學及工程學系碩士論文.
    [28]A.I. Salimon , M.F. Ashbyb, Y. Brechet , A.L. Greer, Mater. Sci. & Eng., A375-377(2004), pp.385-388.
    [29]Guangyin Yuan, Akihisa Inoue, J. Alloys Compd., 387(2005), pp.134-138
    [30]L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, J. Eckert, Materials Chemistry and Physics, 93(2005), pp.174-177.
    [31]J.S. Park, H.K. Lim, J.-H. Kim, H.J. Chang, W.T. Kim, D.H. Kim, E. Fleury, J. Non-Cryst. Solids, 351(2005), pp.2142-2146.
    [32]Guangyin Yuan, Kenji Amiya, Akihisa Inoue, J. Non-Cryst. Solids, 351(2005), pp.729-735.
    [33]D.J. Safarik, C.M. Cady, R.B. Schwarz, Acta mater., 53(2005), pp.2193-2202.
    [34]鄭振東,非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.
    [35]鮑忠興,郭行健,劉思謙,TEM理論與務實,pp.125-156.(私人著作)
    [36]B.B. Sun , Y.B. Wang , J. Wen , H. Yang , M.L. Sui , J.Q. Wang , E. Ma, Scripta mater., 53(2005), pp.805-809
    [37]江俊憲,“高矽含量噴覆成型過共晶鋁矽合金之固態成形性與半固熊製程研究“,2005國立成功大學材料科學及工程學系博士論文,pp.22-24
    [38]Frans Spaepen, Scripta Mater., 54(2006), pp.363-367
    [39]T.G. Nieh, C. Schuh, J. Wadsworth, Y i Li, Intermetallics, 10(2002), pp.1177-1182
    [40]C.A. Schuh, T.G. Nieh, Acta mater., 51(2003), pp.87-99.
    [41]Z.F Zhang, J. Eckert, J. Schultz, Acta Mater., 51(2003), pp.1167-1179
    [42]陳海明,“鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質, 2006國立中山大學材料科學研究所碩士論文”, pp.51-52

    下載圖示 校內:2009-01-28公開
    校外:2009-01-28公開
    QR CODE