簡易檢索 / 詳目顯示

研究生: 施玟妤
Shih, Wen-Yu
論文名稱: 多層透明板厚度及折射率量測系統結合自動對焦系統之設計
Design of Thicknesses and Refractive Indices Measurement System Combined with Auto-Focus System for Multilayer Transparent Samples
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 111
中文關鍵詞: 雷射光學檢測多層透明材質厚度折射率傾斜角度自動對焦
外文關鍵詞: Optical inspection, Multilayer transparent sample, Thickness, Refractive index, Inclination angle
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今代表性的厚度量測方法有橢圓偏振法、干涉法與共焦法,其中部分技術能測量厚度與折射率,但僅適用於薄板量測或單層個別量測,少數能同時測量多層厚度與折射率的技術,皆未考慮每層材料相互不平行的問題。為了改善現有技術的不足,本論文以光學基本定理為基礎,提出一套新穎的光學量測方法,透過簡易的光路架構搭配歪斜光線追跡法,不僅能同時量測多層透明待測物的折射率與厚度,也能量測不平行層的傾斜角度,結合自動對焦系統,亦能提升對焦成效。
    本論文特點是使用兩不同入射角的雷射作為量測光源,首先利用齊次座標轉換與歪斜光線追跡法建立數學模型,接著擷取從待測物各介面反射之光斑訊號,經過影像處理可得到光斑位置資訊,代回方程式後解出所求未知數,依照已知厚度、折射率與傾斜角度,計算離焦距離,完成自動對焦。本論文亦利用光學軟體ZEMAX建立系統架構,透過模擬量測結果來分析系統特性,並評估系統是否可達成目標,接著依模擬參數將此系統建置於光學桌上,透過校正方法補償系統的安裝誤差後,進行實驗與分析,以此驗證實際情況下本量測系統的可行性。

    The representative measurement methods, including ellipsometry, interferometry, and confocal method, can measure thickness and refractive index. However, all methods are limited by thickness range and do not consider that one layer may be unparallel to each other. In order to improve the deficiencies of these techniques, this thesis proposes a novel optical inspection method based on the fundamental theorem of geometrical optics. Through a simple optical structure, it can measure not only the thickness and refractive index of multilayer transparent samples but also the inclination angle of unparallel layer simultaneously. In addition, the measurement system, combined with the auto-focusing system, can improve the focusing effect.
    First, we establish a mathematical model using the homogeneous coordinate transformation and the skew ray tracing method. The characteristic is that two lasers with different incident angles are used as the light source. And then camera would capture the spot signal reflected from each boundary. After image processing, we obtain the spot position information. Furthermore, the data are substituted into the equation to calculate the unknowns. According to the known information, the defocus distance can be calculated to achieve the auto-focusing. In this thesis, we use ZEMAX, an optical simulation software, to establish the system structure, analyze the system characteristics, and evaluate the system feasibility. Finally, a laboratory-built prototype is constructed according to the simulation parameters. The installation error is compensated by the calibration method. After that, experiments and result analysis are carried out to verify the feasibility of the measurement system.

    摘要 I ABSTRACT II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文架構 2 第二章 文獻回顧 4 2-1 光學量測 4 2-1-1 橢圓偏振法 4 2-1-2 干涉法 5 2-1-3 共焦法 6 2-2 自動對焦 7 2-2-1 影像式自動對焦 7 2-2-2 光學式自動對焦 11 第三章 基礎理論 21 3-1 幾何光學基本原理 21 3-2 齊次座標轉換 25 3-3 歪斜光線追蹤法 29 3-3-1 點光源 29 3-3-2 球面邊界歪斜光線追跡 31 3-3-3 平坦邊界歪斜光線追跡 40 3-4 影像處理 44 3-5 小結 48 第四章 系統架構與量測方法 49 4-1 系統架構 49 4-2 元件介紹 50 4-3 數學模型建立 52 4-4 量測方式 61 4-5 小結 62 第五章 光學模擬 63 5-1 系統模擬架構 63 5-2 實驗模擬 65 5-3 模擬結果與討論 69 5-4 小結 73 第六章 實驗結果與討論 74 6-1 實驗量測系統 74 6-2 實驗系統校正 77 6-3 雙層量測結果 80 6-4 三層量測結果與討論 85 6-5 自動對焦成果 95 第七章 結論與未來展望 97 7-1 結論 97 7-2 未來展望 98 參考文獻 100 附錄 111

    [1] P. Calzavara-Pinton, C. Longo, M. Venturini, R. Sala, and G. Pellacani, “Reflectance Confocal Microscopy for In Vivo Skin Imaging,” Photochem. Photobiol., vol. 84, no. 6, pp. 1421-1430, 2008.
    [2] M. A. Ghita et al., “Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma,” Oncol. Lett., vol. 11, no. 5, pp. 3019-3024, 2016.
    [3] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of the refractive-index of highly scattering human tissue by optical coherence tomography,” Opt. Lett., vol. 20, no. 21, pp. 2258-2260, 1995.
    [4] T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett., vol. 21, no. 23, pp. 1942-1944, 1996.
    [5] S. Kim, J. Na, M. J. Kim, and B. H. Lee, “Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics,” Opt. Express, vol. 16, no. 8, pp. 5516-5526, 2008.
    [6] K. H. Kim, S. Y. Lee, S. Kim, and S. G. Jeong, “DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, no. 6, pp. 687-691, 2008.
    [7] J. G. Ritter, R. Veith, J. P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express, vol. 16, no. 10, pp. 7142-7160, 2008.
    [8] G. Min, W. J. Choi, J. W. Kim, and B. H. Lee, “Refractive index measurements of multiple layers using numerical refocusing in FF-OCT,” Opt. Express, vol. 21, no. 24, pp. 29955-29967, 2013.
    [9] P. Rajai, H. Schriemer, A. Amjadi, and R. Munger, “Simultaneous measurement of refractive index and thickness of multilayer systems using Fourier domain optical coherence tomography, part 1: theory,” J. Biomed. Opt., vol. 22, no. 1, 2017.
    [10] C. S. Liu and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Meas. Sci. Technol., vol. 24, no. 10, 2013.
    [11] C. S. Liu, Y. C. Lin, and P. H. Hu, “Design and characterization of precise laser-based autofocusing microscope with reduced geometrical fluctuations,” Microsyst. Technol., vol. 19, no. 11, pp. 1717-1724, 2013.
    [12] C. S. Liu and S. H. Jiang, “Design and experimental validation of novel enhanced-performance autofocusing microscope,” Appl. Phys. B-Lasers O., vol. 117, no. 4, pp. 1161-1171, 2014.
    [13] C. S. Liu and K. W. Lin, “Numerical and experimental characterization of reducing geometrical fluctuations of laser beam based on rotating optical diffuser,” Opt. Eng., vol. 53, no. 12, 2014.
    [14] C. S. Liu, T. Y. Wang, and Y. T. Chen, “Novel system for simultaneously measuring the thickness and refractive index of a transparent plate with two optical paths,” Appl. Phys. B-Lasers O., vol. 124, no. 9, 2018.
    [15] C. S. Liu and T. Y. Weng, “Thickness and Refractive Index Measurement System for Multilayered Samples,” IEEE Access, vol. 9, pp. 21474-21480, 2021.
    [16] D. Pristinski, V. Kozlovskaya, and S. A. Sukhishvili, “Determination of film thickness and refractive index in one measurement of phase-modulated Ellipsometry,” J. Opt. Soc. Am. A., vol. 23, no. 10, pp. 2639-2644, 2006.
    [17] C. Chou, H. K. Teng, C. J. Yu, and H. S. Huang, “Polarization modulation imaging ellipsometry for thin film thickness measurement,” Opt. Commun., vol. 273, no. 1, pp. 74-83, 2007.
    [18] S. Srisuwan, C. Sirisathitkul, and S. Danworaphong, “Validiation of Photometric Ellipsometry for Refractive Index and Thickness Measurements,” Mapan-J. Metrol. Soc. I., vol. 30, no. 1, pp. 31-36, 2015.
    [19] M. Muth, R. P. Schmid, and K. Schnitzlein, “Ellipsometric study of molecular orientations of Thermomyces lanuginosus lipase at the air-water interface by simultaneous determination of refractive index and thickness,” Colloid Surface B, vol. 140, pp. 60-66, 2016.
    [20] E. Shoji, A. Komiya, J. Okajima, M. Kubo, and T. Tsukada, “Three-step phase-shifting imaging ellipsometry to measure nanofilm thickness profiles,” Opt. Laser Eng., vol. 112, pp. 145-150, 2019.
    [21] Wikipedia, “Ellipsometry,” https://en.wikipedia.org/wiki/Ellipsometry.
    [22] Y. B. Seo, Y. H. Yun, and K. N. Joo, “3D multi-layered film thickness profile measurements based on photometric type imaging ellipsometry,” Int. J. Precis. Eng. Man., vol. 17, no. 8, pp. 989-993, 2016.
    [23] W. V. Sorin and D. F. Gray, “Simultaneous thickness and group index measurement using optical low-coherence reflectometry,” IEEE Photonics Technol. Lett., vol. 4, no. 1, pp. 105-107, 1992.
    [24] M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Rev., vol. 23, no. 12, pp. 966-968, 1998.
    [25] G. Coppola, P. Ferraro, M. Iodice, and S. D. Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear, wavelength-scanning interferometer,” Appl. Optics, vol. 42, no. 19, pp. 3882-3887, 2003.
    [26] J. Na, H. Y. Choi, E. S. Choi, C. Lee, and B. H. Lee, “Self-referenced spectral interferometry for simultaneous measurements of thickness and refractive index,” Appl. Optics, vol. 48, no. 13, pp. 2461-2467, 2009.
    [27] J. A. Kim, J. W. Kim, T. B. Eom, J. Jin, and C. S. Kang, “Vibration-insensitive measurement of thickness variation of glass panels using double-slit interferometry,” Opt. Express, vol. 22, no. 6, pp. 6486-6494, 2014.
    [28] S. C. Zilio, “Simultaneous thickness and group index measurement with a single arm low-coherence interferometer,” Opt. Express, vol. 22, no. 22, pp. 27392-27397, 2014.
    [29] J. Park, J. Bae, J. Jin, J. A. Kim, and J. W. Kim, “Vibration-insensitive measurements of the thickness profile of large glass panels,” Opt. Express, vol. 23, no. 26, pp. 32941-32949, 2015.
    [30] J. Kim, K. Kim, and H. J. Pahk, “Thickness Measurement of a Transparent Thin Film Using Phase Change in White-Light Phase-Shift Interferometry,” Curr. Opt. Photonics, vol. 1, no. 5, pp. 505-513, 2017.
    [31] J. Park, J. A. Kim, H. Ahn, J. Bae, and J. Jin, “A Review of Thickness Measurements of Thick Transparent Layers Using Optical Interferometry,” Int. J. Precis. Eng. Man., vol. 20, no. 3, pp. 463-477, 2019.
    [32] M. F. He and S. R. Nagel, “Determining the refractive index, absolute thickness and local slope of a thin transparent film using multi-wavelength and multi-incident-angle interference,” Opt. Express, vol. 28, no. 16, pp. 24198-24213, 2020.
    [33] K. J. Xue, J. S. Wang, Y. Y. Zhao, and Z. J. Xiao, “Measurement of glass thickness and refractive index based on spectral interference technology,” Appl. Optics, vol. 60, no. 26, pp. 7983-7988, 2021.
    [34] H. Su, R. F. Ye, F. Cheng, C. C. Cui, and Q. Yu, “A Straightness Error Compensation System for Topography Measurement Based on Thin Film Interferometry,” Photonics, vol. 8, no. 5, 2021.
    [35] J. Park, J. Bae, J. A. Kim, and J. Jin, “Physical thickness and group refractive index measurement of individual layers for double-stacked microstructures using spectral-domain interferometry,” Opt. Commun., vol. 431, pp. 181-186, 2019.
    [36] I. K. Ilev, R. W. Waynant, K. R. Byrnes, and J. J. Anders, “Dual-confocal fiber-optic method for absolute measurement of refractive index and thickness of optically transparent media,” Opt. Lett., vol. 27, no. 19, pp. 1693-1695, 2002.
    [37] Y. Y. Li, S. Gonzalez, T. H. Terwey, J. Wolchok, Y. B. Li, L. Aranda, R. Toledo-Crow, and A. C. Halpern, “Dual mode reflectance and fluorescence confocal laser scanning microscopy for in vivo imaging melanoma progression in murine skin,” J. Invest. Dermatol., vol. 125, no. 4, pp. 798-804, 2005.
    [38] W. C. Kuo, Y. K. Bou, and C. M. Lai, “Simultaneous measurement of refractive index and thickness of transparent material by dual-beam confocal microscopy,” Meas. Sci. Technol., vol. 24, no. 7, p. 5, 2013.
    [39] C. J. Weng, B. R. Lu, P. Y. Cheng, C. H. Hwang, and C. Y. Chen, “Measuring the thickness of transparent objects using a confocal displacement sensor,” in 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2017: IEEE, pp. 1-5, 2017.
    [40] C. M. Jan, C. S. Liu, and J. Y. Yang, “Implementation and Optimization of a Dual-confocal Autofocusing System,” Sensors, vol. 20, no. 12, 2020.
    [41] Y. M. Choi, H. Yoo, and D. Kang, “Large-area thickness measurement of transparent multi-layer films based on laser confocal reflection sensor,” Measurement, vol. 153, 2020.
    [42] N. Kehtarnavaz and H. J. Oh, “Development and real-time implementation of a rule-based auto-focus algorithm,” Real-Time Imaging, vol. 9, no. 3, pp. 197-203, 2003.
    [43] M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez, “Fast autofocus algorithm for automated microscopes,” Opt. Eng., vol. 44, no. 6, 2005.
    [44] C. M. Chen, C. M. Hong, and H. C. Chuang, “Efficient auto-focus algorithm utilizing discrete difference equation prediction model for digital still cameras,” IEEE T. Consum. Electr., vol. 52, no. 4, pp. 1135-1143, 2006.
    [45] H. C. Chang, T. M. Shih, N. Z. Chen, and N. W. Pu, “A microscope system based on bevel-axial method auto-focus,” Opt. Laser Eng., vol. 47, no. 5, pp. 547-551, 2009.
    [46] M. Moscaritolo, H. Jampel, F. Knezevich, and R. Zeimer, “An Image Based Auto-Focusing Algorithm for Digital Fundus Photography,” IEEE T. Med. Imaging, vol. 28, no. 11, pp. 1703-1707, 2009.
    [47] S. Yousefi, M. Rahman, and N. Kehtarnavaz, “A New Auto-Focus Sharpness Function for Digital and Smart-Phone Cameras,” IEEE T. Consum. Electr., vol. 57, no. 3, pp. 1003-1009, 2011.
    [48] A. Kingston, A. Sakellariou, T. Varslot, G. Myers, and A. Sheppard, “Reliable automatic alignment of tomographic projection data by passive auto-focus,” Med. Phys., vol. 38, no. 9, pp. 4934-4945, 2011.
    [49] M. Weston, P. Mudge, C. Davis, and A. Peyton, “Time efficient auto-focussing algorithms for ultrasonic inspection of dual-layered media using Full Matrix Capture,” NDT&E Int., vol. 47, pp. 43-50, 2012.
    [50] S. Schaefer, S. A. Boehm, and K. J. Chau, “Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilities,” Appl. Opt., vol. 51, no. 14, pp. 2581-2588, 2012.
    [51] H. Pinkard, Z. Phillips, A. Babakhani, D. A. Fletcher, and L. Waller, “Deep learning for single-shot autofocus microscopy,” Optica, vol. 6, no. 6, pp. 794-797, 2019.
    [52] Y. Fujishiro, T. Furukawa, and S. Maruo, “Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography,” Opt. Express, vol. 28, no. 8, pp. 12342-12351, 2020.
    [53] J. He, R. Z. Zhou, and Z. L. Hong, “Modified fast climbing search auto-focus algorithm with adaptive step size searching technique for digital camera,” IEEE T. Consum. Electr., vol. 49, no. 2, pp. 257-262, 2003.
    [54] C. Y. Chen, R. C. Hwang, and Y. J. Chen, “A passive auto-focus camera control system,” Appl. Soft Comput., vol. 10, no. 1, pp. 296-303, 2010.
    [55] J. Jeon, I. Yoon, D. Kim, J. Lee, and J. Paik, “Fully Digital Auto-Focusing System with Automatic Focusing Region Selection and Point Spread Function Estimation,” IEEE T. Consum. Electr., vol. 56, no. 3, pp. 1204-1210, 2010.
    [56] Y. L. Luo, L. Z. Huang, Y. Rivenson, and A. Ozcan, “Single-Shot Autofocusing of Microscopy Images Using Deep Learning,” ACS Photonics, vol. 8, no. 2, pp. 625-638, 2021.
    [57] D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “AUTOMATIC FOCUS CONTROL - THE ASTIGMATIC LENS APPROACH,” Appl. Optics, vol. 23, no. 4, pp. 565-570, 1984.
    [58] T. Pisarkiewicz, A. Czapla, and H. Czternastek, “Influence of thickness inhomogeneity on the determination of optical-constants of amorphous-silicon thin-films,” Appl. Surf. Sci., vol. 65-6, pp. 511-514, 1993.
    [59] J. Rasanen and K. E. Peiponen, “On-line measurement of the thickness and optical quality of float glass with a sensor based on a diffractive element,” Appl. Optics, vol. 40, no. 28, pp. 5034-5039, 2001.
    [60] J. P. Peterson and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces,” Appl. Optics, vol. 45, no. 20, pp. 4916-4926, 2006.
    [61] C. H. Liu and Z. H. Li, “Application of the astigmatic method to the thickness measurement of glass substrates,” Appl. Optics, vol. 47, no. 21, pp. 3968-3972, 2008.
    [62] H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum., vol. 80, no. 7, 2009.
    [63] W. Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang, “Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol., vol. 20, no. 4, 2009.
    [64] C. H. Liu, S. C. Yeh, and H. L. Huang, “Thickness measurement system for transparent plates using dual digital versatile disc (DVD) pickups,” Appl. Optics, vol. 49, no. 4, pp. 637-643, 2010.
    [65] C. H. Liu, C. C. Liu, and W. C. Huang, “Application of astigmatic method and snell's law on the thickness and refractive index measurement of a transparent plate,” Microsyst. Technol., vol. 19, no. 11, pp. 1761-1766, 2013.
    [66] X. D. Zhang, Z. Q. Liu, M. S. Jiang, and M. Chang, “Fast and accurate auto-focusing algorithm based on the combination of depth from focus and improved depth from defocus,” Opt. Express, vol. 22, no. 25, pp. 31237-31247, 2014.
    [67] J. F. Zhang and J. Y. Zhang, “Detection method of inclination angle in image measurement based on improved triangulation,” Appl. Opt., vol. 54, no. 4, pp. 885-889, 2015.
    [68] S. Ozharar, D. Akcan, and L. Arda, “Determination of the refractive index and the thickness of double side coated thin films,” J. Optoelectron. Adv. Mater., vol. 18, no. 1-2, pp. 65-69, 2016.
    [69] B. X. Cao, P. H. Le, S. Ahn, H. Kang, J. Kim, and J. Noh, “Automatic real-time focus control system for laser processing using dynamic focusing optical system,” Opt. Express, vol. 25, no. 23, pp. 28427-28441, 2017.
    [70] S. S. Li, X. T. Jia, M. W. Chen, and Y. P. Yang, “Error analysis and correction for color in laser triangulation measurement,” Optik, vol. 168, pp. 165-173, 2018.
    [71] J. Schlarp, E. Csencsics, and G. Schitter, “Optical scanning of laser line sensors for 3D imaging,” Appl. Optics, vol. 57, no. 18, pp. 5242-5248, 2018.
    [72] B. X. Cao, P. L. Hoang, S. Ahn, J. O. Kim, H. Kang, and J. Noh, “Real-time laser focusing system for high-precision micromachining using diffractive beam sampler and advanced image sensor,” Opt. Laser Eng., vol. 107, pp. 13-20, 2018.
    [73] Z. X. Dong, X. W. Sun, C. Z. Chen, H. R. Yang, and L. J. Yang, “An improved signal processing method for the laser displacement sensor in mechanical systems,” Mech. Syst. Signal Pr., vol. 122, pp. 403-418, 2019.
    [74] H. T. Cui and D. X. Cui, “Centroid-position-based autofocusing technique for Raman spectroscopy,” Opt. Express, vol. 27, no. 19, pp. 27354-27368, 2019.
    [75] A. D. Aguilar and J. R. Torga, “Inclination shift signal: thickness or index measurement in transparent media by transmission of generally astigmatic Gaussian beams,” Opt. Laser Eng., vol. 139, 2021.
    [76] J. F. Weng, G. H. Lu, C. J. Weng, Y. H. Lin, C. F. Liu, R. Vincke, H. C. Ting, and T. T. Chang, “Microscope autofocus algorithm based on number of image slope variations,” Opt. Express, vol. 29, no. 7, pp. 1-22, 2021.
    [77] J. Y. Lee, Y. J. Lin, Y. H. Wang, and C.-S. Liu, “Development of an auto-focus system by the moiré method,” in 10th International Symposium on Measurement and Quality Control 2010, ISMQC 2010, pp. 485-488, 2010.
    [78] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the moiré method,” Measurement, vol. 44, no. 10, pp. 1793-1800, 2011.
    [79] X. Xu, X. Wu, F. Lin, Cellular Image Classification. (Springer, 2017)
    [80] X. Zhang, F. Zeng, Y. Li, and Y. F. Qiao, “Improvement in focusing accuracy of DNA sequencing microscope with multi-position laser differential confocal autofocus method,” Opt. Express, vol. 26, no. 2, pp. 895-904, 2018.
    [81] C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope,” Appl. Phys. B-Lasers O., vol. 109, no. 2, pp. 259-268, 2012.
    [82] C. S. Liu, Z. Y. Wang, and Y. C. Chang, “Design and characterization of high-performance autofocusing microscope with zoom in/out functions,” Appl. Phys. B-Lasers O., vol. 121, no. 1, pp. 69-80, 2015.
    [83] W. Y. Hsu, “Automatic Compensation for Defects of Laser Reflective Patterns in Optics-Based Auto-Focusing Microscopes,” IEEE Sens. J., vol. 20, no. 4, pp. 2034-2044, 2020.
    [84] Y. Fujimoto, H. Endo, T. Yoneyama, and Y. Amano, “Focus detecting device for an optical apparatus,” ed: U.S. Patent No 6649893, 2003.
    [85] B. X. Cao, P. Le Hoang, S. Ahn, H. Kang, J. Kim, and J. Noh, “High-Speed Focus Inspection System Using a Position-Sensitive Detector,” Sensors, vol. 17, no. 12, 2017.
    [86] M. Sarbort, M. Hola, J. Pavelka, P. Schovanek, S. Rerucha, J. Oulehla, T. Fort, and J. Lazar, “Comparison of three focus sensors for optical topography measurement of rough surfaces,” Opt. Express, vol. 27, no. 23, pp. 33459-33473, 2019.
    [87] P. D. Lin and T.-T. Liao, “Skew ray tracing and sensitivity analysis of geometrical optics,” J. Manuf. Sci. Eng., vol. 122, no. 2, pp. 338-349, 2000.
    [88] P. D. Lin and C.H. Lu, “Analysis and design of optical systems by use of sensitivity analysis of skew ray tracing,” Appl. Opt., vol. 43, no. 4, pp. 796-807, 2004.
    [89] P. D. Lin, New Computation Methods for Geometrical Optics. (Springer Singapore, 2013)
    [90] 蔡忠佑,“稜鏡成像位姿變化之分析與設計Prisms Analysis and Design Base on Image Orientation Change,”國立成功大學機械工程學系,博士論文 2007。
    [91] 蔡志豪,“具四自由度之FSM主動式雷射光源補償系統的光學鏡組設計與功能驗證Design and Characterization of Optical Prisms for 4-DOF FSM Active Laser Compensation System,”國立成功大學機械工程學系,碩士論文 2021。
    [92] 翁子堯,“三層透明基板厚度及折射率量測系統與自動對焦顯微鏡之設計Design of Thickness and Refractive Index Measurement System and Auto-Focusing Microscope for Three-Layer of Transparent Substrates,”國立成功大學機械工程學系,碩士論文 2020。
    [93] I. M. Khater, I. R. Nabi, G. Hamarneh, “A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods,” Patterns, vol. 1, no. 3, 2020.
    [94] 演算法筆記,https://web.ntnu.edu.tw/~algo/Fitting.html。

    無法下載圖示 校內:2027-08-18公開
    校外:2027-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE