簡易檢索 / 詳目顯示

研究生: 郭奕佑
Guo, Yi-You
論文名稱: 多用戶多輸入多輸出波束空間通道之軟體無線電原型
Software Defined Radio Prototyping for MU-MIMO Beamspace Channel
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 54
中文關鍵詞: 波束空間通道多使用者多輸入多輸出用戶選擇分空間多工軟體無線電
外文關鍵詞: Multiuser, Multiple-Input and Multiple-Output, User Selection, Spatial Division Multiplexing Access, Software Defined Radio
相關次數: 點閱:212下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多天線普遍出現在各種無線通訊系統中,除了形成波束增加通訊品質外,也可以分空間多工。多重進接數量跟天線數量成正比,然而基地臺端的天線數量沒辦法無限增加,所以經由選擇部分使用者進行同時傳輸是另一種改善通道容量的方法。此外,分空間多工的精神是基於使用者位於不一樣的空間,也就是對於基地臺來說,使用者的訊號是從不一樣的方向入射。為了知道使用者的訊號入射角度,引入毫米波所使用的波束空間通道,基地台只需要知道各個使用者的通道響應,就可以轉換到訊號的入射角。因此,波束空間通道輔助選擇使用者能夠提供較好的分空間多工通訊品質。為了驗證波束空間通道用於輔助選擇使用者的效能,本論文建立了多用戶多輸入多輸出波束空間通道之軟體無線電原型。這個原型支持中心頻率介於五十百萬赫茲至六吉赫茲,並可傳送任何預先定義的訊號,以及最高支援到十六隻天線。除此之外,在這個軟體無線電原型中,包含了空中同步,所以基地台所儲存的訊號不需要尋找實體層封包訊號的開頭。為了要量測出所有通道狀態信息,使用了兩種不同型態的封包格式,並應用在實際的測量中。在實驗中,可以看到在視距傳播環境下,波束空間通道跟使用者相對於基地台的位置確實有著密切相關性,並且波束空間通道比起通道矩陣的秩,更有助解析用戶的空間位置,進而提收用戶選擇的效能。

    Wireless systems with multiple antennas, known as Multi-Input Multi-Output (MIMO), has been shown to tremendously improve the system capacity and reliability compared to the single-antenna systems. Generally, the number of parallel data streams that a MIMO system can support is limited by the number of transmit or receive antennas, whichever is less. As the number of users increases, more antennas at the Base Station (BS) is required to ful- fill the user demands, leading to increased capital cost to the operators. An alternative is to select a subset of users to serve simultaneously based on the Channel State Information (CSI). In this context, the beamspace provides the required spatial information for user se- lection. While the beamspace theory is well known, its practical application to addressing the user selection problem has not been explored. In this thesis, a versatile prototype based on Software Defined Radio (SDR) is developed to study the user selection problem based on the beamspace MIMO channel. The implemented prototype operates at the sub-6 GHz band with the capability to support a wide range of antenna configurations and user-defined signals. Besides, the over-the-air synchronization is achieved by considering two types of frame structures. A filed measurement campaign is conducted in an indoor environment and the measurement results confirm the superiority of the beamspace MIMO channel over the antenna space MIMO channel in identifying an appropriate subset of spatially distributed users.

    Chinese Abstract (i) Abstract (ii) Acknowledgement (iii) Table of Contents (iv) List of Figures (vii) List of Tables (viii) List of Symbols (x) List of Acronyms (xi) 1 Introduction (1) 2 Background Review (3) 2.1 Beamforming (3) 2.1.1 Array Factor (4) 2.1.2 Uniform Linear Array (5) 2.2 Beamspace (6) 2.3 Multiuser Spatial Multiplexing (8) 2.4 ZF Receiver (9) 3 Uplink MU-MIMO Selection (12) 3.1 Motivation (12) 3.2 System Model (13) 3.3 Frame structure for Multiuser Uplink (14) 3.3.1 TDMA-based training mechanism (15) 3.3.2 CDMA-based training mechanism (15) 3.4 MIMO Processing (16) 3.4.1 Channel Estimation (16) 3.4.2 Equalization (17) 3.5 Multiuser Beamspace (18) 3.6 User Selection (18) 3.6.1 Beam Indexing User Selection (19) 3.6.2 Post-processing SNR User Selection (19) 4 SDR Prototyping Implementation (21) 4.1 Overview (21) 4.2 System Design (22) 4.2.1 Pre- and Post-data Processing (22) 4.2.2 Prototyping Architecture (25) 4.3 SDR Prototyping Hardware (26) 4.4 Over-The-Air Synchronization (28) 4.5 Pilot Sequence (29) 4.6 Prototyping User Interface (31) 5 Results and Discussions (35) 5.1 Experiment Setup (35) 5.2 Over-The-Air Synchronization (36) 5.3 Frame Types (37) 5.4 Scenario I (38) 5.5 Scenario II (39) 5.6 Scenario III (40) 6 Conclusion (50) 6.1 Feature Work (51) References (53)

    [1] B. D. V. Veen and K. M. Buckley, “Beamforming: a versatile approach to spatial filter- ing,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988.
    [2] D. Gesbert, M. Kountouris, R. W. Heath, C.-B. Chae, and T. Sa ̈lzer, “From single user to multiuser communications: Shifting the mimo paradigm,” IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 36–46, 2007.
    [3] L. Ordonez, A. Pages-Zamora, and J. R. Fonollosa, “Diversity and multiplexing trade- off of spatial multiplexing mimo systems with csi,” IEEE Transactions on Information Theory, vol. 54, no. 7, pp. 2959–2975, 2008.
    [4] R. W. Heath and A. J. Paulraj, “Switching between diversity and multiplexing in mimo systems,” IEEE Transactions on Communications, vol. 53, no. 6, pp. 962–968, 2005.
    [5] H. Steyskal, “Digital beamforming,” 1988 18th European Microwave Conference, pp. 49–57, 1988.
    [6] J. Litva and T. K. Lo, Digital Beamforming in Wireless Communications. Artech House, Inc., 1996.
    [7] G. Sridharan and W. Yu, “Degrees of freedom of mimo cellular networks: Decom- position and linear beamforming design,” IEEE Transactions on Information Theory, vol. 61, no. 6, pp. 3339–3364, 2015.
    [8] S. Diggavi, N. Al-Dhahir, A. Stamoulis, and A. Calderbank, “Great expectations: the value of spatial diversity in wireless networks,” Proceedings of the IEEE, vol. 92, no. 2, pp. 219–270, 2004.
    [9] S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, and S. Rangan, “Mimo for millimeter- wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110–121, 2014.
    [10] R. Wonjong and J. M. Cioffi, “On the capacity of multiuser wireless channels with multiple antennas,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2580–2595, 2003.
    [11] D. A. Gore, R. W. Heath, and A. J. Paulraj, “Transmit selection in spatial multiplexing systems,” IEEE Communications Letters, vol. 6, no. 11, pp. 491–493, 2002.
    [12] T. Khomyat, P. Uthansakul, M. Uthansakul, and S. B. Hee, “Switching transmission mode in multiuser-mimo systems,” The 20th Asia-Pacific Conference on Communica- tion (APCC2014), pp. 454–457, 2014.
    [13] K. Joonsuk and J. M. Cioffi, “Spatial multiuser access with antenna diversity using sin- gular value decomposition,” 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record, vol. 3, pp. 1253–1257 vol.3, 2000.
    [14] J. Mitola, “Software radio architecture: a mathematical perspective,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 4, pp. 514–538, 1999.
    [15] H. L. V. Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. Wiley, 2002.
    [16] T. Hui and S. A. Zekavat, “A simple beamforming-simo merger in spatially correlated channel via virtual channel representation,” in Proc. IEEE Global Communications Conference (GLOBECOM), pp. 3544–3548, 2005.
    [17] A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2563–2579, 2002.
    [18] H. Huang, C. B. Papadias, and S. Venkatesan, MIMO Communication for Cellular Networks. Springer, 2011.
    [19] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?” IEEE Transactions on Information Theory, vol. 49, no. 4, pp. 951– 963, 2003.
    [20] T. L. Marzetta, “Blast training: Estimating channel characteristics for high capac- ity space-time wireless,” Proc. 37th Annual Allerton Conference on Communications, Control, and Computing, pp. 958–966, 1999.
    [21] C. Wang, E. K. S. Au, R. D. Murch, W. H. Mow, R. S. Cheng, and V. Lau, “On the performance of the mimo zero-forcing receiver in the presence of channel estimation error,” IEEE Transactions on Wireless Communications, vol. 6, no. 3, pp. 805–810, 2007.
    [22] A. Sayeed and J. Brady, “Beamspace mimo for high-dimensional multiuser communi- cation at millimeter-wave frequencies,” in Proc. IEEE Global Communications Con- ference (GLOBECOM), pp. 3679–3684, 2013.
    [23] X. Gao, L. Dai, Z. Chen, Z. Wang, and Z. Zhang, “Near-optimal beam selection for beamspace mmwave massive mimo systems,” IEEE Communications Letters, vol. 20, no. 5, pp. 1054–1057, 2016.
    [24] X. Jiang, H. Wang, Z. Zhang, X. Gao, L. Dai, and M. F. Iskander, “Low rf-complexity massive mimo systems based on vertical spatial filtering for urban macro cellular net- works,” IEEE Transactions on Vehicular Technology, 2017.

    下載圖示 校內:2019-06-16公開
    校外:2019-06-16公開
    QR CODE