| 研究生: |
何健修 Ho, Chien-Hsiu |
|---|---|
| 論文名稱: |
極光電子能譜儀之發展 Development of Aurora Electron Spectrometer |
| 指導教授: |
陳秋榮
Chen, Chio-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 極光 、靜電分析儀 |
| 外文關鍵詞: | aurora, electrostatic analyzer |
| 相關次數: | 點閱:115 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文的主要研究目的是發展極光電子能譜儀,此儀器預定部屬至電離層上層的人造衛星以量測極光上空的電子流。其性能要求為:於40毫秒內分32能量階段量測介於10電子伏特至2萬電子伏特能量的電子,並以16方向區塊量測電子速度方向與地球磁磁場方向之間夾角的電子流強度分部。為達成上述目的,極光電子能譜儀使用高帽式靜電分析儀(top-hat electrostatic analyzer),並搭配微通道版(micro-channel plate, MCP)以量測電子的通量。此研究主要分成兩項工作:
一、 在電腦數值模擬的輔助之下設計極光電子能譜儀:
以電腦數值模擬推估各種設計的性能。其中性能表現最佳的設計被選擇為極光電子能譜儀並製作了原型體。
二、 以實驗驗證極光電子儀的性能:
極光電子儀的原型體被放置於成功大學電漿與太空科學中心的離子束系統中進行測試與校準。將測試與校準結果與數值模擬結果進行比較,並以數值模擬探討造成差異的原因。
In the thesis, we report the development of an Aurora Electron Spectrometer (AES) to measure the electron energy distribution in the 10eV - 20keV energy range with 40ms time resolution for full energy scan with 32 energy steps for deployment in the upper ionosphere above the aurora arc. AES also measures the full particle pitch angle distribution with 16 azimuthal channels. For this purpose, a combination of top-hat electrostatic analyzer and micro-channel plate (MCP) is adopted measure particle flux. Two major focuses of this work are:
1. AES Design by numerical simulations:
Numerical simulations are performed to estimate the AES performance with different design parameters and the best design is determined for the AES fabrication.
2. Performance check of AES by experiment:
A prototype of AES has been built and its performance has been checked by conducting calibration test using the beam line system at the Plasma and Space Science Center (PSSC) of National Cheng Kung University (NCKU). The experiment results are compared with the simulation results. The differences between the experiment and the simulation are investigated.
Asamura, K., D. Tsujita, H. Tanaka, Y. Saito, T. Mukai, and M. Hirahara (2003), Auroral particle instrument onboard the index satellite, Adv. Space Res., 32, 3, pp. 375 –378.
Asamura, K.,et al. (2009), Sheared flows and small-scale Alfven wave generation in the auroral acceleration region, Geophys. Res. Lett., 36, L05105, doi:10.1029/2008GL036803
Banks, P. M., C. R. Chappell, and A. F. Nagy (1974), A New Model for the Interaction of Auroral Electrons With the Atmosphere: Spectral Degradation, Backscatter, Optical Emission, and Ionization, J. Geophys. Res., 79(10), 1459–1470
Berger, M. J., S. M. Seltzer, K. Maeda (1970), Energy deposition by auroral electrons in atmosphere, J Atmos Terr Phys, 32: 1015―1045
Carlson, C. W., D. W. Curtis, G. Paschmann, and W. Michael (1983), An Instrument for Rapidly Measuring Plasma Distribution Functions With High Resolution, Adv. Space Res., 2, pp. 67 – 70.
Carlson, C. W., and J. P. McFadden (1998), Design and Application of Imaging Plasma Instruments, in Measurement Techniques in Space Plasmas: Particles, Robert F. Pfaff, Joseph E. Borovsky, and David T. Young, Eds., GeoPhys. Monogr. Ser., 102, American Geophysical Union, Washington D.C., pp.123 – 140.
Carlson, C. W., R. F. Pfaff, and J. G. Watzin (1998), The Fast Auroral SnapshoT (FAST) mission, Geophys. Res. Lett., 25, 2013.
Haerendel, G., B.U. Olipitz, S. Buchert, O. H. Bauer, E. Rieger, amd C. La Hoz(1996), Optical and radar observations of auroral arcs with emphasis on small-scale structures, J. Atmos. Terr. Phys., 58, pp. 71-83
Johnstone, A. D., C. Alsop, P. J. Carter, A. J. Coates, A. J. Coker, R. A. Gowen, B. K. Hancock, T. E. Kennedy, P. H. Sheather, R. D. Woodliffe, S. Burge, M. Grande, D. S. Hall, D. M. Kelsh, A. Preece, D. H. Reading, B. Narheim, and Y. Meyerfeld (1996), PEACE: A Plasma Electron and Current Experiment, Space Science Review, Vol. 79 , pp. 351 – 398.
Linder, D.R., A. J. Coates, R. D. Woodliffe, C. Alsop, A.D. Johnstone, M.Grande, A. Preece, B. Narheim, and D. T. Young (1998), The Cassini CAPS Electron Spectrometer, in Measurement Techniques in Space Plasmas: Particles, Robert F. Pfaff, Joseph E. Borovsky, and David T. Young, Eds., Geo. Phys. Monogr. Ser., 102, American Geophysical Union, Washington D.C., pp.257 – 262.
Machida, S., Saito, Y., Ito, Y., Hayakawa, H. (1998), Instrumental characteristics of the Electron Spectrum Analyzer (ESA) onboard the Planet-B mission and observational perspectives of the electron measurements, Earth, Planets and Space, Volume 50, p. 207-211
Moore, T. E., C. C. Davis, and M. A. Coplan (1989), Building Scientific Apparatus, a Practical Guide to Design and Construction, 2nd Ed., Addison-Wesley, Redwood City.
Mrigakshi, Alankrita Isha (2008), Study and test of micro-channel plates used in the dual ion spectrometer of the MMS mission by NASA, Luleå University of Technology, Luleå, Sweden.
Roach, F. E. and L. L. Smith (1967), The worldwide morphology of the atomic oxygen nightglows, In: B. M. McCormack (ed.): Aurora and Airglow. Dordrecht-Holland
Saito, H., Y. Masumoto, T. Mizuno, et al. (2001), INDEX: Piggy-back satellite for aurora observation and technology demonstration, Acta Astronautica, 48, 723-735
Sandahl, Ingrid, Urban Brandstrom and Tima Sergienko (2011), Fine structure of aurora, International Journal of Remote Sensing, Vol. 32, No. 11, pp. 2947 – 2972.
Störmer, C. (1946), FREQUENCY OF 12,330 MEASURED HEIGHTS OF AURORA FROM SOUTHERN NORWAY IN THE YEARS 1911–1944, Terr. Magn. Atmos. Electr., 51(4), 501–504
Young, D.T., S. J. Bame, M. F. Thomsen, R. H. Martin, J. L. Burch, J. A. Marshall, and B. Reinhard (1988), 2π-radian field-of-view toroidal electrostatic analyzer, Rev. Sci. Instrum., 59, pp.743 – 751.
Wiza, Joseph Ladislas (1979), Microchannel Plate Detectors, Nuclear Instruments and Methods, Vol.162, pp 587 – 601.