簡易檢索 / 詳目顯示

研究生: 陳俊榮
Chen, Chun-Jung
論文名稱: 冷卻水塔之流場分析
Flow Field Analysis of a Cooling Tower
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系碩士在職專班
Department of Mechanical Engineering (on the job class)
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 冷卻水塔流場分析速度均勻度
外文關鍵詞: Cooling tower, Flow field analysis, Velocity uniformity
相關次數: 點閱:134下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 冷卻水塔為一特殊之熱交換器,透過兩種流體(水和空氣)的直接接觸,並且使用蒸發和熱對流及熱傳導的方式進行熱交換,其目的是將系統或製程中產生的廢熱,通過循環水吸收後成為熱水並經過冷卻水塔進行熱交換成為冷水,而再一次的進入系統或製程中使用,如此形成一個冷卻水塔之循環。本文首先建立冷卻水塔三維數值模型,並且利用小型風洞實驗量測出填料及擋水器的慣性阻力係數與黏性阻力係數,將此數據帶入商用軟體進行模擬,探討幾種不同的水塔尺寸和外觀設計對冷卻水塔性能的影響,其中有幾個關鍵的數據,可以用來判斷水塔的性能是否能夠達到設計目的,而速度均勻度及風量就是兩個重要的因子。
    本文分別以定壓降及定流量之邊界條件來探討不同的進風口高度(A=2500、5980、6580及7180mm)、不同的氣室高度(B=328、1028、2028及3728mm)以及不同導風板的長度(L=0、300、600及1500mm),透過改變冷卻水塔的幾何尺寸來觀察流場分佈及壓力分佈,本文研究成果可做為未來冷卻水塔之設計參考。

    The cooling tower is a special heat exchanger to cool the hot water, through direct contact with the water and air and the use of evaporation and heat convection/conduction. Its purpose is to cool the hot water generated in the system or process, and the hot water becomes cold, and again circulating into the system or process.
    In the present study establishes three-dimensional numerical model of the cooling tower and the use of small wind tunnel tests to measure the amount of fill and eliminator the inertial resistance factor and viscous inertial resistance factor. These data are used in the CFD software simulation to explore the performance (velocity uniformity) of the cooling tower.
    There are two different boundary conditions used in this study, given pressure drop and mass flow rate. The effects of different air inlet height (A=2500, 5980, 6580, 7180mm), different plenum height (B =328, 1028, 2028 3728mm) and different air inlet guide (L =0, 300, 600, 1500mm) are examined on the flow field and pressure distribution. This thesis would be useful for the future cooling towers design.

    摘要 I Abstract II 誌謝 VIII 目錄 IX 表目錄 XI 圖目錄 XII 符號說明 XV 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 8 第二章 理論分析 15 2-1 物理模型與基本假設 15 2-2 邊界條件設定 19 第三章 數值分析 24 3-1 數值方法 24 3-2 建立網格 29 3-3 解題流程 29 3-4 收斂條件 29 3-5 格點測試 30 第四章 實驗設備與方法 34 4-1 實驗設備 34 4-2 實驗方法與步驟 35 第五章 結果與討論 46 5-1 不同進風口高度對速度分佈、速度均勻度及風量的影響 46 5-2 不同氣室高度對速度分佈、速度均勻度及風量的影響 50 5-3 不同導風板長度對速度分佈、速度均勻度及風量的影響 52 第六章 結論 80 參考文獻 82

    1.Walker, W. H., Lewis, W. K., and McAdams, W. H., “Principles of Chemical Engineering”, McGraw-Hill, New York,1923.
    2.Merkel, F., “Verdunstungskuhlung”, VDI Forschungsarbeiten, No.275, Berlin, 1925.
    3.ASHRAE. HVAC 1 toolkit: a toolkit for primary HVAC system energy calculation. American Society of Heating, Refrigerating, and Air-Conditioning Engineers; 1999.
    4.Asvapoositkul, W., and Kuansathan, M., “Comparative evaluation of hybrid (dry/wet) cooling tower performance”, Applied Thermal Engineering, Vol.71. pp.83-93, 2014.
    5.Zhang, Q., Wu, J., Zhang, G., Zhou, J., Guo, Y., and Shen, W., “Calculations on performance characteristics of counterflow reversibly used cooling towers”, international journal of refrigeration, Vol.35, pp.424-433, 2012.
    6.Simpson, W. M. and Sherwood, T. K., “Performance of Small Mechanical Draft Cooling Towers”, Refrigerating Engineering, Vol.52, No.6, PP. 535-543, 574-576, 1946.
    7.Hollands, “An Analysis of a Counterflow Spray Cooling Tower”, International J. of Heat Mass Transfer, Vol.17, No.10, PP. 1227-1239,1974.
    8.Derksen, D. D., Bender, T. J., Bergstrom, D. J., andRezkallah, K. S.,“A study on the effects of wind on the air intakeflow rate of a cooling tower”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.64, pp.47–59, 1996.
    9.Robert, N. M., “CFD prediction of cooling tower drift”,Journal of Wind Engineering and Industrial Aerodynamics, Vol.94, pp.463-490, 2006.
    10.Hanna, S. R., “A simple drift deposition model applied to the chalk point dye tracer experiment”, in: Symposiumon Environmental Effects of Cooling Tower Plumes, May 2–4, 1978, University of Maryland, PPSP CPCTP-22, WRRC Special Report No. 9, (Also NOAA, ATTDL Contribution File No. 78/3), 1978, pp. III-105–III-118.
    11.Rafat, A. W., and Masud, B., “CFD simulation of wet cooling towers”, Applied Thermal Engineering, Vol.26, pp.382–395, 2006.
    12.Kaiser, A. S., Lucas, M., Viedma, A., and Zamora, B.“Numerical model of evaporative cooling processes in a new type of cooling tower”, International Journal of Heat and Mass Transfer, Vol.48, pp.986–999, 2005
    13.Lu, L., and Cai, W., “A Universal Engineering Model For Cooling Towers”International Refrigeration and Air Conditioning Conference, pp.625, 2002.
    14.Saffari, H., and Hosseinnia, S.H., “Two-phase Euler-Lagrange CFD simulation of evaporative cooling in a Wind Tower”, Energy and Buildings, Vol. 41, pp.991-1000, 2009
    15.Chahine, A., Matharan, P., Wendum, D., Musson-Genon, L., Bresson, R., and . Carissimo, B., “Modelling atmospheric effects on performance and plume dispersal from natural draft wet cooling towers”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.136, pp.151-164, 2015.
    16.Klimanek, A. and Bialecki, R. A., “Solution of heat and mass transfer in counterflow wet-cooling tower fills”, International Communications in Heat and Mass Transfer, Vol.36, pp.547-553, 2009.
    17.Webb, R. L., and Villacres, A., “Performance Simulation of Evaporative Heat Exchangers (Cooling Towers, Fluid Coolers and Condensers)”, Heat Transfer Engineering, Vol.6, No.2, pp.31-38, 1985.
    18.Yan, W. M., “Effects of Film Evaporation on Laminar Mixed Convection Heat and Mass Transfer in a Vertical Channel”, International J. Heat Mass transfer, Vol.35, No.12, pp.3419-3429,1992.
    19.Bernier, M. A., “Thermal Performance of Cooling Towers”, ASHRAE J., pp56-61, Aprial,1995.
    20.Wang, Z. J. and Jang, J. Y., “Heat and Mass Transfer Performance Testing and Analysis of Closed Type Cooling Tower”, Chinese Journal of heating, Refrigerating and Air Conditioning, Vol.6, No.2, pp10-22, 1997.
    21.Jaber, H. and Webb, R. L., “Design of Cooling Towers by the effective-NTU method,ASME” Journal of Heat and Mass Transfer,Vol.111,pp837-843,1989.
    22.Jin, G. Y., Cai, W. J., Lu, L., and Lee, E. L., Chianga, A., “A simplified modeling of mechanical cooling tower for control and optimization of HVAC systems”, Energy Conversion and Management, Vol. 48, pp. 355–365, 2007.
    23.Picardoa, J. R., and Variyar, J. E., “The Merkel equation revisited: A novel method to compute the packed height of a cooling tower”,Energy Conversion and Management Vol.57,pp.167–172, 2012.
    24.Gharagheizi, F., Hayati, R., and Fatemi, S., “Experimental study on the performance of mechanical cooling tower with two types of film packing”,Energy Conversion and Management Vol.48, pp.277–280, 2007.
    25.Terblanche, R., Reuter, H. C. R., and Kröger, D. G., “Drop size distribution below different wet-cooling tower fills”,Applied Thermal Engineering, Vol.29 pp.1552–1560, 2009.
    26.Kant, K., “Knowledge base for the systematic design of wet cooling towers. Part II: Fill and other design parameters”,lntJ. Refrig. Vol.19, No. 1, pp.52 60, 1996.
    27.Federico, V. D., Longo, S., Chiapponi, L., Archetti, R., and Ciriello, V., “Radial gravity currents in vertically graded porous media:Theory and experiments for Newtonian and power-law fluids”, Advances in Water Resources Vol.70, pp.67-76, 2014.
    28.Lemouari, M., and Boumaza, M., “Experimental investigation of the performance characteristics of a counterflow wet cooling tower”, International Journal of Thermal Sciences, Vol.49, pp.2049-2056, 2010.
    29.Kalantar, V., “Numerical simulation of cooling performance of wind tower (Baud-Geer) in hot and arid region”, Renewable Energy, Vol.34, pp.246-254, 2009.
    30.Liao, H. T., Yang, L. J., Du, X. Z., and Yang, Y. P., “Influences of height to diameter ratios of dry-cooling tower upon thermo-flow characteristics of indirect dry cooling system”, International Journal of Thermal Sciences, Vol.94 pp.179-192, 2015.
    31.Muangnoi, T., Asvapoositkul, W., and Hungspreugs, P., “Performance characteristics of a downward spray water-jet cooling tower”, Applied Thermal Engineering, Vol.69, pp.165-176, 2014.
    32.ANSYS15.0, FLUENT Help, 6.2.3. Porous Media Conditions, 2014.
    33.王啟川, 熱交換器設計: 五南出版社, 2005.

    無法下載圖示 校內:2020-06-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE