簡易檢索 / 詳目顯示

研究生: 周承漢
Chou, Chen-Han
論文名稱: 利用機器學習方法改善溶氧感測器自動連續監測數據之研究
Development of machine learning models for improving both the real-time and long-term data quality of dissolved oxygen probes from a surface-water monitoring system
指導教授: 張智華
Chang, Chih-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 溶氧機器學習水質感測器生物附著
外文關鍵詞: dissolved oxygen (DO), machine learning, biofouling, water quality sensor
相關次數: 點閱:188下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著物聯網與感測器技術的發展,水質自動連續監測系統(WQMS)的應用也更為普及,例如為了防止廠商惡意排放廢水而建置之放流水連續監測設備,為了預防魚蝦死亡而設置之魚塭水質即時監測系統。應用於戶外、開放水體之WQMS常因設置環境條件之變動而影響其數據可靠度,其中最為顯著的是溶氧(DO)感測器,許多案例顯示DO感測器探頭或薄膜極易被水中微生物與藻類附著,往往在清理校正後數小時或數日內即無法傳回正確數據,亦使DO感測器遠比其他常用水質感測器(水溫、電導度、pH)需要更高的清理與校正頻率。因此,本研究首先針對DO探頭附著造成的數據失效問題,利用DO感測器探頭附著水槽實驗,使用兩種機器學習模型改善數據品質以降低WQMS的維護頻率,第一種Temporal Fusion Transformer (TFT)用於判斷DO探頭失效時機及預測失效後的數據,第二種Random Forest (RF)用於修補長期DO數據的失效片段。其次,擬定使用兩種模型的時機與策略,制定一套Artificial Intelligence enabled dissolved oxygen sensor (AIDO)方法。最後將AIDO實際應用於戶外、開放水體之WQMS,並進一步分析討論此流程帶來的效益。
    本研究結果顯示TFT能有效預測DO探頭失效後的DO趨勢,預測數據與有附著探頭相比,其平均絕對誤差(MAE)由2.21 mg/L降低為1.31 mg/L,R2則由0.81提升為0.85。若進一步以RF修補長期DO數據的失效片段,可將MAE與R2進一步提升為0.78 mg/L及0.96。本研究將AIDO應用於台南運河,從每次感測器清校開始即以TFT判斷DO探頭失效時機,失效後無需立刻清校,失效期1天內可以TFT補正即時數據,清校後再利用RF進行失效片段修復,依照此操作流程循環,最終應用結果顯示AIDO能準確判斷DO探頭失效時機,協助規劃派遣維護人員,並可大幅增加DO監測數據的穩定度與可靠度。

    Recently, with the development of the Internet of Things (IOT) and sensor technology, the application of water quality monitoring system (WQMS) has become more and more popular. Dissolved oxygen (DO) is one of the important parameters in water quality monitoring. Many cases show that the DO sensors are susceptible to fouling and are prone to fouling from algal growth and sedimentation. In rapid biofouling conditions, DO sensors often return incorrect data within a few hours or days after cleaning and calibration, which means DO sensors need higher cleaning and calibration frequency than other commonly used water quality sensors (water temperature, conductivity, pH). In this study, two machine learning approaches were developed to improve the data failure problem caused by DO probe fouling. First, Temporal Fusion Transformer (TFT) was used to judge the failure timing of DO probes and predict DO data after probe failure. Second, Random Forest Regressor (RFR) was used to repair the failure segments of long-term DO data. The result shows that TFT can effectively predict the probe failure timing and the DO trend after probe failure. Using RFR can precisely repair failure segments of data. Furthermore, combining two machine learning models to develop a process for maintenance the WQMS. This WQMS maintenance process was practically applied to Tainan Canal WQMS. The result shows that this process can assist in planning the dispatchment of personnel, and greatly increase the stability and reliability of WQMS data.

    摘要 I 誌謝 V 目錄 VI 表目錄 X 圖目錄 XII 第1章 前言 1 1.1 研究動機 1 1.2 研究目的 2 1.3 論文架構 3 第2章 文獻回顧 4 2.1 水質連續監測系統 4 2.1.1 水質連續監測項目 7 2.1.2 水質感測器發展概況 10 2.1.3 水質感測器原理 12 2.2 水質連續監測系統問題 18 2.3 水質感測器之生物附著 20 2.3.1 生物附著形成機制 20 2.3.2 對DO感測器影響 22 2.3.3 生物附著防治策略 23 2.4 機器學習方法 24 2.4.1 機器學習簡介 24 2.4.2 機器學習應用於環境監測之案例簡介 26 2.4.3 Temporal Fusion Transformer (TFT) 28 2.4.4 隨機森林 31 第3章 研究方法 33 3.1 試驗區域與試驗水樣來源 33 3.2 水質感測器生物附著實驗 35 3.2.1 實驗設計與實驗流程 35 3.2.2 實驗水質連續監測系統需求及規劃 37 3.2.3 清理與校正方法 40 3.3 生物附著實驗數據整理流程 42 3.3.1 數據分析 42 3.3.2 數據前處理 44 3.4 建立機器學習模型 45 3.4.1 即時溶氧預測模型 45 3.4.2 溶氧數據校正模型 48 3.4.3 超參數最化 49 3.5 測試機器學習模型 51 3.5.1 模型測試方法 51 3.5.2 模型評估指標 51 3.6 建立機器學習方法改善溶氧感測器連續監測數據 52 3.6.1 探頭失效判斷標準 53 3.6.2 AIDO應用實驗 55 第4章 結果與討論 56 4.1 實驗數據分析 56 4.1.1 水質數據分析 56 4.1.2 溶氧監測數據趨勢分析 61 4.1.3 溶氧探頭生物附著狀況 63 4.2 感測器溶氧誤差與探頭失效時機之研判 64 4.3 溶氧監測數據影響因子之研判 70 4.4 機器學習模型輸入資料集之建立 74 4.4.1 資料集劃分 74 4.4.2 數據前處理 75 4.5 即時溶氧預測模型 77 4.5.1 超參數最佳化 77 4.5.2 預測模型輸出時間尺度差異比較 79 4.5.3 模型效能評估 81 4.6 溶氧數據事後校正模型 83 4.6.1 超參數最佳化 83 4.6.2 模型效能評估 83 4.6.3 預測模型與校正模型效能比較 85 4.7 AIDO改善溶氧感測器監測數據 87 4.7.1 AIDO應用成果 87 4.7.2 AIDO效益分析 90 第5章 結論與建議 93 5.1 結論 93 5.2 建議 94 第6章 參考文獻 96 附錄一、感測器附著實驗原始數據 101 附錄二、TFT超參數最佳化結果 107 附錄三、RF超參數最佳化結果 108

    Adu-Manu, K.S., Tapparello, C., Heinzelman, W., Katsriku, F.A. and Abdulai, J.-D. (2017) Water quality monitoring using wireless sensor networks: Current trends and future research directions. ACM Transactions on Sensor Networks (TOSN) 13(1), 1-41.
    Arakeri, M.P., Kumar, B.V., Barsaiya, S. and Sairam, H. (2017) Computer vision based robotic weed control system for precision agriculture, pp. 1201-1205, IEEE.
    Atique, U. and An, K.-G. (2019) Reservoir Water Quality Assessment Based on Chemical Parameters and the Chlorophyll Dynamics in Relation to Nutrient Regime. Polish Journal of Environmental Studies 28(3).
    Babin, M., Roesler, C.S. and Cullen, J.J. (2008) Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms: Theory, instrumentation and modelling, Unesco.
    Chaerun Nisa, E. and Kuan, Y.-D. (2021) Comparative Assessment to Predict and Forecast Water-Cooled Chiller Power Consumption Using Machine Learning and Deep Learning Algorithms. Sustainability 13(2), 744.
    Correll, D.L. (1998) The role of phosphorus in the eutrophication of receiving waters: A review. Journal of environmental quality 27(2), 261-266.
    de Santana, F.B., de Souza, A.M. and Poppi, R.J. (2018) Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 191, 454-462.
    Delauney, L., Compere, C. and Lehaitre, M. (2010) Biofouling protection for marine environmental sensors. Ocean Science 6(2), 503-511.
    Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013) Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems 29(7), 1645-1660.
    Hang, Y., Xiangtong, L., Longqin, X., Jingbin, L., Shuangyin, L., Liang, C., Dachun, F., Jianjun, G. and Liqiao, L. (2021) EMD-RF-LSTM: Combination Prediction Model of Dissolved Oxygen Concentration in Prawn Culture. 智慧农业.
    Holmberg, M., Davide, F.A., Di Natale, C., D'Amico, A., Winquist, F. and Lundström, I. (1997) Drift counteraction in odour recognition applications: lifelong calibration method. Sensors and Actuators B: Chemical 42(3), 185-194.
    HORIBA Advanced Techno, C., Ltd. (2020) Galvanic vs Optical Dissolved Oxygen Sensors.
    Huan, J., Chen, B., Xu, X.G., Li, H., Li, M.B. and Zhang, H. (2021) River Dissolved Oxygen Prediction Based on Random Forest and LSTM. Applied Engineering in Agriculture 37(5), 901-910.
    Huan, J., Li, H., Li, M. and Chen, B. (2020) Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and long short-term memory network: A study of Chang Zhou fishery demonstration base, China. Computers and electronics in agriculture 175, 105530.
    Hussain, C.M. and Kec̦ili, R. (2019) Modern environmental analysis techniques for pollutants, Elsevier.
    Huynh, T.M., Nguyen, T.S.V., To, T.D., Nguyen, L.D., Le, H.M.T., Doan, T.C.D. and Dang, C.M. (2018) Electrochemical sensor chips for multiple measurements of dissolved oxygen, pH and oxidation-reduction potential in aquacultural farming. International Journal of Nanotechnology 15(11-12), 1024-1038.
    Jesus, G., Casimiro, A. and Oliveira, A. (2021) Using Machine Learning for Dependable Outlier Detection in Environmental Monitoring Systems. ACM Transactions on Cyber-Physical Systems 5(3), 1-30.
    Jewson, D. and Taylor, J. (1978) The influence of turbidity on net phytoplankton photosynthesis in some Irish lakes. Freshwater Biology 8(6), 573-584.
    Kramer, D.L. (1987) Dissolved oxygen and fish behavior. Environmental biology of fishes 18(2), 81-92.
    Kruse, P. (2018) Review on water quality sensors. Journal of Physics D: Applied Physics 51(20), 203002.
    Lambrou, T.P., Anastasiou, C.C., Panayiotou, C.G. and Polycarpou, M.M. (2014) A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE sensors journal 14(8), 2765-2772.
    Li, D., Xu, X., Li, Z., Wang, T. and Wang, C. (2020) Detection methods of ammonia nitrogen in water: A review. TrAC Trends in Analytical Chemistry 127, 115890.
    Li, W., Wu, H., Zhu, N., Jiang, Y., Tan, J. and Guo, Y. (2021) Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU). Information Processing in Agriculture 8(1), 185-193.
    Lim, B., Arik, S.O., Loeff, N. and Pfister, T. (2019) Temporal fusion transformers for interpretable multi-horizon time series forecasting. arXiv preprint arXiv:1912.09363.
    Liu, Y., Zhang, Q., Song, L. and Chen, Y. (2019) Attention-based recurrent neural networks for accurate short-term and long-term dissolved oxygen prediction. Computers and electronics in agriculture 165, 104964.
    Lowe, M., Qin, R. and Mao, X. (2022) A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water 14(9), 1384.
    Mitchell, T.O. (2006) Luminescence based measurement of dissolved oxygen in natural waters. Hach Company, Loveland, CO.
    Morais, R., Matos, S.G., Fernandes, M.A., Valente, A.L., Soares, S.F., Ferreira, P. and Reis, M. (2008) Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and electronics in agriculture 64(2), 120-132.
    Morrison, G., Fatoki, O., Persson, L. and Ekberg, A. (2001) Assessment of the impact of point source pollution from the Keiskammahoek Sewage Treatment Plant on the Keiskamma River-pH, electrical conductivity, oxygen-demanding substance (COD) and nutrients. Water Sa 27(4), 475-480.
    Najafzadeh, M. and Ghaemi, A. (2019) Prediction of the five-day biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods. Environmental monitoring and assessment 191(6), 1-21.
    Niu, W.-J., Feng, Z.-K., Yang, W.-F. and Zhang, J. (2020) Short-term streamflow time series prediction model by machine learning tool based on data preprocessing technique and swarm intelligence algorithm. Hydrological Sciences Journal 65(15), 2590-2603.
    Parra, L., Lloret, G., Lloret, J. and Rodilla, M. (2018) Physical sensors for precision aquaculture: A Review. IEEE sensors journal 18(10), 3915-3923.
    Patel, K.K. and Patel, S.M. (2016) Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges. International journal of engineering science and computing 6(5).
    Pobering, S. and Schwesinger, N. (2004) A novel hydropower harvesting device, pp. 480-485, IEEE.
    Roberts, D., Rittschof, D., Holm, E. and Schmidt, A. (1991) Factors influencing initial larval settlement: temporal, spatial and surface molecular components. Journal of Experimental Marine Biology and Ecology 150(2), 203-221.
    Samuelsson, O., Björk, A., Zambrano, J. and Carlsson, B. (2018) Fault signatures and bias progression in dissolved oxygen sensors. Water Science and Technology 78(5), 1034-1044.
    Singh, K.P. and Gupta, S. (2012) Artificial intelligence based modeling for predicting the disinfection by-products in water. Chemometrics and Intelligent Laboratory Systems 114, 122-131.
    Stankevič, V. and Šimkevičius, Č. (2000) Use of a shock tube in investigations of silicon micromachined piezoresistive pressure sensors. Sensors and Actuators A: Physical 86(1-2), 58-65.
    Suquet, J., Godo-Pla, L., Valentí, M., Verdaguer, M., Martin, M.J., Poch, M. and Monclús, H. (2020) Development of an environmental decision support system for enhanced coagulation in drinking water production. Water 12(8), 2115.
    Suslow, T.V. (2004) Oxidation-reduction potential (ORP) for water disinfection monitoring, control, and documentation.
    Taylor, R. (1990) Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography 6(1), 35-39.
    Valera, M., Walter, R.K., Bailey, B.A. and Castillo, J.E. (2020) Machine learning based predictions of dissolved oxygen in a small coastal embayment. Journal of Marine Science and Engineering 8(12), 1007.
    van Vliet, M.T., Franssen, W.H., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P. and Kabat, P. (2013) Global river discharge and water temperature under climate change. Global Environmental Change 23(2), 450-464.
    Wagner, R.J., Boulger Jr, R.W., Oblinger, C.J. and Smith, B.A. (2006) Guidelines and standard procedures for continuous water-quality monitors: station operation, record computation, and data reporting.
    Wei, Y., Jiao, Y., An, D., Li, D., Li, W. and Wei, Q. (2019) Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection. Sensors 19(18), 3995.
    Yang, X.-e., Wu, X., Hao, H.-l. and He, Z.-l. (2008) Mechanisms and assessment of water eutrophication. Journal of zhejiang university Science B 9(3), 197-209.
    Yu, Y., Si, X., Hu, C. and Zhang, J. (2019) A review of recurrent neural networks: LSTM cells and network architectures. Neural computation 31(7), 1235-1270.
    工業技術研究院 (2021) 111年度高效化智慧水連網研發應用及專案管理計畫服務建議書.
    台南市政府 (2019) 『運河水環境改善計畫』整體計畫工作計畫書

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE