| 研究生: |
楊智榮 Yang, Jhih-Rong |
|---|---|
| 論文名稱: |
結合指數加權移動平均與累和管制圖在監控多階段系統製程品質上之應用研究 Monitoring the Process Quality for Multistage Systems Using New Mixed EWMA-CUSUM Control Chart |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 40 |
| 中文關鍵詞: | 多階段系統 、混和EWMA-CUSUM管制圖 、快速初始反應值 、整體平均串長度 |
| 外文關鍵詞: | multistage manufacturing system, Mixed EWMA-CUSUM control chart, Fast Initial Response, overall average run length |
| 相關次數: | 點閱:165 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
統計製程管制(Statistical Process Control, SPC)是現代生產製造業中一項不可或缺的重要方法,若能善用此工具於監控產品及製程特性,則可大幅提升生產品良率。隨著時代的進步,現今產品的製造過程愈趨精密、複雜,多數的產品往往需要經過多個階段的製造流程,才能順利完成。例如:半導體製造業、電路印刷版、化學工業、航太工業、電信產業等許多工業領域之製程,皆屬於多階段製造系統之範疇。而上述高科技工業,各個階段的製程資料常具有自我相關的性質。Pan et al.(2016)已建構出多階段系統之殘差及管制圖,其中之指數加權移動平均( Exponentially Weighted Moving Average, EWMA )管制圖及累和( Cumulative Sum, CUSUM )管制圖之偵測能力均優於一般傳統的EWMA及CUSUM管制圖,但仍有進一步改善的空間。
在多階段系統的製程中,本研究擬採用Pan et al.(2016)多階段系統之模型,先取得各階段模型的殘差值,再將所取得之殘差值代入混和指數加權移動平均與累和(Mixed EWMA-CUSUM)的管制圗中並考慮快速初始反應值(Fast initial Response, FIR)與Headstart,以期建立多階段殘差RMECFIRHS (Revised Mixed EWMA-CUSUM with modified FIR and Headstart )管制圗。接著,我們利用整體平均串長度(Overall Average Run Length, OARL)作為在各種參數組合下多階段系統新的殘差混和指數平滑與累和管制圗與Pan et al.(2016)的多階段系統殘差管制圗偵測能力的比較基準。最後,我們以模擬結果發現新的多階段殘差RMECFIRHS管製圖的偵測能力均優於Pan et al.(2016)的多階段系統殘差管製圖。
With the advent of modern technology, manufacturing processes have become very sophisticated; most industries require multiple process stages to complete their final products. In this research, we develop a new control chart model suitable for monitoring the process quality of multistage manufacturing systems. Considering the correlation often occurs among various stages in a manufacturing system, we first adopt the idea of multistage manufacturing systems model proposed by Pan et al.(2016) to establish a multistage residual RMECFIRHS (Revised Mixed EWMA-CUSUM with modified Fast Initial Response and Headstart) control chart. Then, a simulation study is conduct to evaluate the detecting ability of our proposed multistage residual RMECFIRHS control chart under various combinations of process shifts. The overall average run length (OARL) is used to compare the detecting performances of our proposed multistage residual RMECFIRHS control chart with those of multistage residual EWMA and CUSUM control charts.
Finally, a numerical example of a three-stage with chemical manufacturing process is given to demonstrate the usefulness of our proposed multistage residual RMECFIRHS control chart. Both the simulation results and numerical example show that the detecting ability of our proposed multistage residual RMECFIRHS control chart outperforms the multistage residual EWMA and CUSUM control charts when a process shift occurs. Hopefully, the results of this research can be served as a useful guideline for monitoring the process quality of multistage systems.
1.Abbas, N. Riaz, M. and Does, R.J.M.M. (2013). Mixed exponentially weighted moving average – Cumulative sum charts for process monitoring. Quality and Reliability Engineering International, 29(3): 345-356.
2.Ajadi, J.O. Riaz, M. and Al-Ghamdi, K. (2016). On increasing the sensitivity of mixed EWMA–CUSUM control charts for location parameter. Journal of Applied Statistics, 43(7): 1262-1278.
3.Haq, A. Brown, J. and Moltchanova, E. (2014). Improved fast initial response features for exponentially weighted moving average and cumulative sum control charts. Quality and Reliability Engineering International, 30(5): 697-710.
4.Montgomery, D.C. (2012). Introduction to Statistical Quality Control, 7^th Ed., Wiley, New York.
5.Page, E.S. (1961). Cumulative Sum Charts. Technometrics, 3(1): 1-9.
6.Pan, J. N., Li, C. I. and Wu, J. J. (2016). A new approach to detecting the process changes for multistage systems. Expert Systems with Applications, 62: 293-301.
7.Roberts, S.W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 42(1): 239-250.
8.Steiner, S.H. (1999). EWMA control charts with time varying control limits and fast initial response. Journal of Quality Technology, 31(1): 75-86.
9.Wyckoff, D.D. (1984). New Tools for Achieving Service Quality. Cornell Hotel and Restaurant Administration Quarterly, 25(3): 78-91.
10.Yang, S.F. and Yang, C.M. (2006). An Approach to Controlling Two Dependent Process Steps with Autocorrelated Observations. International Journal of Advanced Manufacturing Technology, 29(1): 170-177.
11.Zhang, L., Gan, F.F. and Loke, C.K. (2012). Phase I Study of Surgical Performances with Risk-Adjusted Shewhart Control Charts. Quality Technology and Quantitative Management, 9(4): 375-382.