| 研究生: |
林崇凱 Lin, Chung-Kai |
|---|---|
| 論文名稱: |
發展偵測解酯酶活性之微小化系統 Development of microsystems for investigating activity of lipase from Candida rugosa |
| 指導教授: |
吳意珣
Ng, I-Son |
| 共同指導教授: |
王翔郁
Wang, Hsiang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 微液滴 、解酯酶 、交流阻抗法 、循環伏安法 、酵素固定化 |
| 外文關鍵詞: | Microfluidic droplet, Lipase, Impedance, Cyclic voltammetry, Self-assembled monolayer |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討解酯酶活性的研究已發展超過一世紀,其偵測方法有許多種,如滴定法、Rhodamine B agar plate…等,但使用現行方法偵測酶活較耗時且成本高,因此本研究嘗試建立快速響應之光學與電化學微系統來偵測Candida rugosa解酯酶活性。
光學微系統選用能穩定生成固定大小之靜止微液滴,探討酸鹼值與界面活性劑對解酯酶的影響,液滴內之游離酵素含有解酯酶與甘油螢光試劑,當系統酸鹼值為pH 7.0、pH 7.4、pH 8.6時,解酯酶相對活性為100 %、95 %、4 %;當系統甘油濃度為0.01 M且酸鹼值為pH 7.0、pH 7.4、pH 8.6時,甘油螢光試劑中的glycerol enzyme mix與glycerol probe相對活性為84 %、90 %、100 %。為了降低pH值對偵測靈敏度的影響,本研究最終選用電化學生物感測之微系統,以電極表面與電解質中化學反應造成的電荷變化來探討解酯酶活性。
電化學生物感測之微系統一開始利用交流阻抗法檢測甘油濃度來確定解酯酶活性。實驗結果顯示在緩衝液為HEPES時,電子轉移阻抗與溶液甘油含量呈線性關係(R2 = 0.94),但因靈敏度低且標準差過大,改為將甘油去氫酶與NADH輔酶固定化於自組裝電極,並使用循環伏安法來檢測低於1 %之甘油溶液,結果顯示反應電流的大小在NADH氧化還原電位 - 0.31 V時與甘油濃度具相當高的線性關係(R2 = 0.99),但因響應值過低,最後再試圖利用長鏈自組裝膜改質電極,在循環伏安進行解酯酶活性測試,得到初始水解速率為2.42 ×〖10〗^(-5) M/s和平衡水解速率0.2 ×〖10〗^(-5) M/s。
The investigation of lipase has been developed for nearly a century. However, conventional methods for measuring activity of lipase are time-consuming and expensive. Therefore, the aim of this study is to establish a rapid response micro-system to investigate the lipase activity from Candida rugosa based on optical and electrochemical detections. The optical detection was used for studying the effects of pH and surfactant on the lipase activity. When the pH values were 7.0, 7.4 and 8.6, the relative lipase activity were 100 %, 95 %, and 4 %, respectively, while the fluorogenic enzyme activities were 84 %, 90 %, and 100 %, respectively. Because the enzymes applied in the glycerol fluorogenic kit was pH sensitive, it was disadvantage to use optical detection for future applications. Therefore, we further performed quantification of glycerol based on alternative current impedance; the results indicated that the standard deviation was higher than the sensitivity of the detection. Therefore, glycerol dehydrogenase and NADH were immobilized with cross-linking agents by forming a self-assembled monolayer (SAM) on a gold electrode. The SAM system could detect glycerol solution and lipase activity by the cyclic voltammetry. The results show that the initial and equilibrium hydrolysis rate of lipids by lipase was 2.42 ×〖10〗^(-5) M/s and 0.2 ×〖10〗^(-5) M/s, respectively. The detection sensitivity was as high as 0.62 vol% glycerol / μΑ These results provide the basis for future development of the rapid and affordable analysis technique for the lipase activity.
[1] 何重億, "建立產生蛋白質微液滴之微系統及其應用於解脂酶反應的分析," 國立成功大學化學工程學系碩士論文, 2014.
[2] 郭亮均, "建立以Candida rugosa 和Novozym 435 兩步驟酵素方法製備生質柴油, " 私立東海大學化學工程與材料工程研究所碩士論文, 2011.
[3] A. K. Chen, and J. A. Starzmann, "Potentiometric Qnantitation of Glycerol Using Immobilized Glycerol Dehydrogenase," Biotechnology and Bioengineering, vol. 24, pp. 971-975, 1982.
[4] A. C. de Romo'r, "Tallow and the Time Capsule: Claude Bernard's Discovery of the Pancreatic Digestion of Fat, " History and Philosophy of the Life Sciences, vol. 11, pp. 253-274, 1989.
[5] A. HOUDE, A. KADEMI, and D. LEBLANC, "Lipases and Their Industrial Applications, "Applied Biochemistry and Biotechnology, vol. 118, pp. 155-170, 2004.
[6] A.Huebner, D. Bratton, G. Whyte, M. Yang, A. J. deMello, C. Abell,and F. Hollfelder, "Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays," Lab Chip, vol. 9, pp. 692-698, 2008.
[7] A. Glogauer, V. P Martini, H. Faoro, G. H Couto, M. Müller-Santos, R. A Monteiro, D. A Mitchell, E. M de Souza, F. O Pedrosa and N. Krieger, "Identification and characterization of a new true lipase isolated through metagenomic approach, " Microbial Cell Factories, vol. 10, pp. 1-15, 2011.
[8] A. I. Zia, A. R. M. Syaifudin, S. C. Mukhopadhyay, P. L. Yu, I. H. Albahadly, C. P. Gooneratne, J. Kosel, and T. S. Liao, "Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices, " Journal of Physics: Conference Series, vol. 439, pp. 467-471, 2013.
[9] B. Joseph, P. W. Ramteke, and G. Thomas, "Cold active microbial lipases: Some hot issues and recent developments," Biotechnology Advances, vol. 26, pp. 457-470, 2008.
[10] B. Y. Chang, and S. M. Park, "Electrochemical Impedance Spectroscopy," Annual Review of Analytical Chemistry, vol. 3, pp. 207-229, 2010.
[11] F. Pattus, R. Verger, and P. Desnuelle, "Comparative study of the interactions of the trypsin and detergent form of the intestinal aminopeptidase with liposomes, " Biochemical and Biophysical Research Communications, vol. 69, pp. 718-723, 1976.
[12] H. Song, and R. F. Ismagilov, "Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents," Journal of the American Chemical Society, vol. 125, pp. 14613-14619, 2003.
[13] I. Björkhem, K. Sandelin, and A. Thore, "A simple, fully enzymic bioluminescent assay for triglycerides in serum," Clinical Chemistry, vol. 28, pp. 1742-1744, 1982.
[14] K. D. Mukherjee, I. Kiewitt, and M. J. Hills, "Substrate specificities of lipases in view of kinetic resolution of unsaturated fatty acids," Applied Microbiology and Biotechnology, vol. 40, pp.489-493, 1993.
[15] L. C. Clark, and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962.
[16] M. A. Kashmiri, A. Adnan, and B. W. Butt, "Production, purification and partial characterization of lipase from Trichoderma Viride, " African Journal of Biotechnology, vol. 5, pp. 878-882, 2006.
[17] M. V. Calvo, F. J. Plou, A. Ballesteros, "Effect of Surfactants on Activity and Stability of Native and Chemically Modified Lipases A and B from Candida Rugosa, " Biocatalysis and Biotransformation, vol. 13, pp. 271-285, 2009.
[18] M. A. Abdelhakeem, A. M. Elsayed, and T. A. Alkhulaqi, "New Colorimetric Method for Lipases Activity Assay in Microbial Media," American Journal of Analytical Chemistry, vol. 4, pp. 442-444, 2013.
[19] N. Jaffrezic-Renault, and S. V. Dzyadevych, "Conductometric Microbiosensors for Environmental Monitoring," Sensors, vol. 8, pp. 2569-2588, 2008.
[20] N. Luković, Z. Knežević-Jugović and D. Bezbradica, "Biodiesel Fuel Production by EnzymaticTransesterification of Oils: Recent Trends, Challenges and Future Perspectives, " Alternative Fuel, pp. 47-72.
[21] N. A. Lee, S. J. Kim, B. J. Park, H. M. Park, M. Yoon, B. H. Chung, and N. W. Song, "Development of multiplexed analysis for the photocatalytic activities of nanoparticles in aqueous suspension," Photochemical and Photobiological Sciences, vol. 10, pp. 1979-1982, 2011.
[22] N. Verma, S. Thakur, and A. K. Bhatt, "Microbial Lipases: Industrial Applications and Properties (A Review), " International Research Journal of Biological Sciences, Vol. 8, pp. 88-92, 2012.
[23] P. Nilsson-Ehle, and M. C. Schotz, "A stable radioactive substrate emulsion for assay of lipoprotein lipase," Journal of Lipid Research, vol. 17, pp. 536-541, 1976.
[24] P. T. Kissinger, and W. R. Heineman, "Cyclic voltammetry," Journal of Chemical Education, vol. 60, pp.702-706, 1983.
[25] P. Jagdish, V. Deepa, G. Rohan, and R. D. Bhagat, "Production of Microbial Lipases Isolated From Curd Using Waste Oil as a Substrate," Research Journal of Pharmaceutical Biological and Chemical Sciences, vol. 4, pp. 831-838, 2013.
[26] R. T. Otto, H. Scheib, U. T. Bornscheuer, J. Pleiss, C. Syldatk, and R. D. Schmid, "Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids, " Journal of Molecular Catalysis B: Enzymatic, vol. 8, pp. 201-211, 2000.
[27] R. Gupta, N. Gupta, and P. Rathi, "Bacterial lipases: an overview of production, purification and biochemical properties, "Applied Microbiology and Biotechnology, vol. 64, pp. 763-781, 2004.
[28] R. Shabani, S. A. Mozaffari, S. W. Husain and M. Saber Tehrani, "Selective nanosensing of copper (II) ion using L-lysine functionalized gold cysteamine self-assembled monolayer," Iranian Journal of Science and Technology Transaction A Science, vol. 33, pp. 335-347, 2009.
[29] S. N. Ruzheinikov, J. Burke, S. Sedelnikova, P. J. Baker, R. Taylor, P. A. Bullough, N. M. Muir, M. G. Gore, and D. W. Rice, "Glycerol Dehydrogenase : Structure, Specificity, and Mechanism of a Family III Polyol Dehydrogenase," Structure, vol. 9, pp. 789-802, 2001.
[30] S. Salgın and S. Takaç, "Effects of Additives on the Activity and Enantioselectivity of Candida rugosa Lipase in a Biphasic Medium, " Chemical Engineering and Technology, vol. 30, pp. 1739–1743, 2007.
[31] S. H. Tan, N. T. Nguyen, Y. C. Chua, and T. G. Kang, "Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel," Biomicrofluidics, vol. 4, pp. 736-745, 2010.
[32] S. Datta, L. R. Christena, and Y. R. S. Rajaram, "Enzyme immobilization: An overview on techniques and support materials," Biotechnology, vol. 3, pp. 1-9, 2013.
[33] S. Yücel, P. Terzioğlu and D. Özçimen, "Lipase Applications in Biodiesel Production, " Biodiesel - Feedstocks, Production and Applications, Chapter 8, pp. 209-250, 2013.
[34] Y. Asanomi, H. Yamaguchi, M. Miyazaki, and H. Maeda "Enzyme-Immobilized Microfluidic Process Reactors," Molecules, vol. 16, pp. 6041-6059, 2011.
[35] Z. A Jarjes, M. R. Samian, and S. A. Ghani, "Electrochemical study of glycerol o f cooking palm oil with glycerol dehydrogenase at polymers modified electrodes," International Journal of Electrochemical Science, vol.6, pp. 1317-1330, 2011.