簡易檢索 / 詳目顯示

研究生: 林育賢
Lin, Yu-Hsien
論文名稱: 結合內感應與電阻加熱之醫用組織熱療系統
Integration of inner induction heating and resistance heating for a tissue thermal ablation system
指導教授: 黃聖杰
Hwang, Sheng-Jye
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 感應加熱電阻加熱熱療系統頻率自調
外文關鍵詞: Inner induction heating, resistance heating, thermal therapy
相關次數: 點閱:166下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • "熱"對人體是很重要的免疫反應啟動機制之一,加上組織細胞本身具不耐熱的特性,所以熱治療被認為是去除有害組織(Tissue Ablation)最有效的方法之一。熱治療主要是利用熱來燒灼組織,當組織受到高溫時會凝固並壞死,而達到去除目的。目前以RFA (Radio Frequency Ablation)射頻燒灼治療和MWA (Microwave Ablation)微波熱療技術最為廣泛使用,但由於專利問題,儀器必須仰賴國外進口,導致此兩種療程的索費甚高,造成患者使用上的負擔。有鑑於此,應用各種加熱原理的熱療儀器開始推陳出新,如外感應加熱熱療,使用大能量的外感應加熱器在體外產生交變磁場,誘發放入組織內的感磁性材料或經皮穿刺到組織的感磁針生熱,達到治療目的。但此技術會衍生諸多問題,如磁力未能深入人體深處、針具製作與材料選用麻煩,以及臨床操作會因高強度磁場而有安全疑慮等問題;亦有應用電阻加熱的原理來設計熱療儀器,傳統的電阻熱療,嵌入電阻導熱基材於燒灼針內,根據電生熱特性使針尖生熱達到治療效果,但常因為導熱基材的尺寸要求,衍生燒灼針直徑過大的情形。
      本研究針對改善上述熱療技術情形來加以探討,提出一種新的原創熱治療模組設計概念,整合發展出包含燒灼針具、電源供應系統以及監控系統等的一套完整熱治療系統,並以實作證明所提之設計可行性高,功能上也與目前市售系統相當。設計的主要概念為結合內感應和電阻加熱兩種原理來設計加熱端,將直徑極細的漆包線繞於熱電偶上形成感應線圈,外層套上具微感磁性的PTC
    穿刺針,插入組織後,將線圈通以高頻電流產生交變磁場,誘發外層管狀針之內壁生熱,加上感應線圈段根據阻抗自成一電阻發熱元件,藉由兩種原理生產之熱能達到組織治療目的。搭配Arduino開發板設計PID模組溫度控制,再輔以電腦人機介面來設定所需溫度以及監控溫度上升情形。
      考量到頻率對感應加熱的優劣是一重要指標,撰寫頻率自調(Frequency Self-tuning)功能,電源供應系統利用電感值會隨著線圈匝數多寡變化的特性,自動地調整輸出頻率使其接近諧振頻率,如此可確保在加熱線圈段即使長度不同時,皆能擁有最佳的加熱速率,以便適用於治療不同大小的組織。一般而言,當溫度達到攝氏50~70 °C時便可造成組織細胞凝固性壞死。根據離體豬肝燒灼和動物實驗結果,以內部具1~5 cm加熱線圈段之燒灼針實驗,能有效地在動物組織內升溫至所要求溫度,每次加熱最大斷面面積約直徑1~1.5 cm。綜觀以上,此系統的整體效果與市售熱療系統差異不大,但可大幅地降低醫療成本,並且改善傳統外感應與電阻熱療所遭遇問題。往後亦可搭配多針使用來達到較大斷面燒灼,且可開發5 cm以上長型加熱針延伸出新的醫學療程及應用。

    Heat can destroy tissue efficiently due to tissue’s low heat-resisting capability. Thus, thermal therapy for tissue ablation is considered to be one of the most effective approaches to ablate harmful tissues from human’s organ via heating. In this thesis, an integrated inner induction heating and resistance heating approach for thermal tissue ablation was proposed. The idea was first verified with finite element analysis and a series of experiments to prove the feasibility of this approach. Then a high frequency power supply system and a needle system was developed, designed and fabricated. The high frequency power system was designed similar to an induction power supply system with maximum power capability of 30 W, maximum current of 2 A and maximum voltage of 30 V. The power supply system also had the capability to detect the resonant frequency of the needle system automatically in order to supply the maximum amount of current to the needle module. The needle module was made with an 18-gauge size PTC needle (1.24 mm outer diameter and 0.96 mm inner diameter, 150 mm long) which is commonly used for medical treatment. The material for the PTC needle is SUS 304 or SUS 316 (low magnetic permeability material) which is a common material used for medical devices. A 0.5 mm in diameter thermocouple with stainless steel sheath was used as the core for enameled wire coil wrapping and also used for temperature detection. The core with the coil was then installed inside of the PTC needle. Arduino microprocessor was used to control heating process. Connect the needling system to the power supply under microprocessor control would form a complete system for thermal therapy. The system was tested via series of vitro pig liver and alive animal experiments to verify its effectiveness and capability. It was found that, with proper setting of voltage in the power supply, the system could efficiently detect and set the system frequency to the resonant frequency, thus heat and ablate the tissue efficiently. From the results, it was found that the diameters of the ablated tissue cross sections were always bigger than 10 mm. The length of the ablating could range from 10 to 50 mm. Thus, the ablating volume could be big. In comparison with current RFA, microwave or laser ablation devices, the proposed novel and innovative system performed equally well or even better. However, the system was compact and the needles used were small. Even the cost of the system was low thus could overcome the high medical cost of thermal ablation. Due to its capability to ablate very high volume of cylindrical shaped tissue with just one needle, this system also has the potential to create new medical treatments for the patients.

    摘要 I Abstract III 誌謝 XVI 目錄 XVIII 圖目錄 XXI 表目錄 XXVI 符號表 XXVII 第一章 緒論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究方法 3 1-4 開發流程 5 1-5 文章架構 5 第二章 相關技術回顧 7 2-1 文獻回顧 7 2-2 相關研究探討 9 2-2-1 內感應加熱 10 2-2-2 電阻加熱 12 2-3 相關熱療技術介紹與比較 13 2-3-1 電磁熱療機 13 2-3-2 電熱針 16 2-3-3 RFA射頻燒灼技術(Radio Frequency Ablation) 17 2-3-4 MWA微波熱療技術(Microwave Ablation) 20 第三章 研究方法與系統架構 24 3-1 感應加熱原理 24 3-1-1 電磁感應與感應加熱 24 3-1-2 穿透深度與集膚效應 26 3-1-3 鄰近效應 29 3-2 電阻加熱原理 30 3-3 結合內感應與電阻熱療系統架構 32 3-4 電源供應系統 32 3-5 溫度監控系統 36 3-5-1 PID控制理論 38 3-5-2 最大電壓設定 41 3-6 頻率自調 42 3-6-1 頻率自調結果 44 3-7 燒灼針模組 45 3-7-1 燒灼針 45 3-7-2 繞線機 48 3-8 整體架構與系統 49 第四章 研究發展過程與測試 51 4-1 問題與定義 51 4-2 感應加熱模擬 53 4-2-1 外感應加熱模擬結果 55 4-2-2 內感應加熱模擬結果 56 4-2-3 模擬結果 58 4-3 電阻加熱實驗 59 4-3-1 木頭加熱實驗 59 4-4 頻率自調(Frequency self-tuning)實驗 60 4-4-1 頻率自調需要性實驗 60 4-4-2 頻率自調溫度測試 63 4-5 直流與交流供電實驗 63 4-6 多針燒灼實驗 65 4-7 離體豬肝加熱實驗 70 4-7-1 實驗結果與討論 80 4-8 活體動物實驗 81 4-8-1 實驗結果與討論 85 第五章 結論與未來展望 88 5-1 結論 88 5-2 未來展望 89 參考文獻 93 索引 97

    [1] Zervas, N.T., Shintani, A., Kuwayama, A., Hale, R., Pickren, K. and Merry, A., “Experimental induction heating hypophysectomy,” Stereotactic and Functional Neurosurgery, vol. 35, pp. 129-137, 1973.
    [2] Valentin, Nemkov, Vladimir and Bukanin, “Optimal design of internal induction coils,” Centre for Induction Technology, Inc. 2005.
    [3] Vologdin, V.P., “Induction Surface Harding,” Oborongiz, pp. 292, 1947.
    [4] Gellmand, B.N., Paddock, K. and Slanda, J., “Induction heating for the delivery of thermal therapy,” Boston Scientific Scimed, Inc., US6895282 B2, 2005.
    [5] Gildenberg, P.L., “Pattern of Brain Heating Studied with a High-Resistance Heating Electrode,” Stereotactic and Functional Neurosurgery, vol. 22, pp. 343-345, 1962.
    [6] Zuchini, R., H.-W. Tsai, C.-Y. Chen, C.-H. Huang, S.-C. Huang and G.-B. Lee, “Electromagnetic thermotherapy using fine needles for hepatoma treatment,” European Journal of Surgical Oncology (EJSO), vol. 37, pp. 604-610, 2011.
    [7] Yamada, S., Ikehata, Y., Ueno, T. and Kakikawa, “Control of Exciting Frequency to Pancake Type Applicator Having Wireless Transmission for Hyperthermia Therapy,” Journal of the Magnetics Society of Japan, vol. 38, No. 2-1, 2014.
    [8] Riechert, T., Forster, Ch. and Krainick, J., “The technique of induction heating in stereotaxic surgery,” Top Probl. Psychiat. Neurol, pp.154-159, 1970.
    [9] Gal Shafirstein, Scott L. Ferguson and Milton Waner, “Conductive Interstitial Thermal Therapy Device,” Board of Trustees of the University of Arkansas, Inc., US6780177, 2004.
    [10] Ayav, A., Jiao, L.R. and Habib, N.A., “Bloodless liver resection using radiofrequency energy,” Digestive surgery, vol. 24, pp. 314-317, 2007.
    [11] Ruers, T.J.M., De Jong, K.P. and IJzermans, J.N.M., “Radiofrequency for the Treatment of Liver Tumors,” Digestive Surgery, vol. 22, pp. 245-253, 2005.
    [12] Liang, P. and Wang, Y., “Microwave Ablation of Hepatocellular Carcinoma,” Oncology, vol. 72, pp. 124-131, 2007.
    [13] Wang, G., Zhao, G., Li, H. and Guan, Y., “Research of thermal response simulation and mold structure optimization for rapid heat cycle molding processes, respectively, with steam heating and electric heating,” Materials & Design, vol. 31, pp. 382-395, 2010.
    [14] Serway, R.A. and Jewett Jr., J.W., “Physics for scientists and engineers,” Brooks/Cole Publishing Company, vol. 1, 2009.
    [15] Curtis, F.W., “High-frequency induction heating,” McGraw-Hill, 1950.
    [16] Oruganti, R., Yang, J.J and Lee, F.C., “Implementation of optimal trajectory control of series resonant converter,” IEEE Trans. on Power Electronics, vol. 3, pp. 318-327, 1988.
    [17] Bhat, A.K.S. and Swamy, M.M., “Analysis and design of a parallel resonant converter including the effect of high-frequency transformer,” in Proc. IEEE PESC, vol. 2, pp. 768-775, 1989.
    [18] Schonknecht, A., Rik, W.A.A. and De Doncker, “Novel Topology for Parallel Connection of Soft Switching High Power High Frequency Inverters,” IEEE Trans. on Industry Applications, vol. 39, pp. 550-555, 2003.
    [19] Ziegler, J.G. and Nichols, N.B., “Optimum settings for automatic controllers,” Transactions of the ASME, vol. 64, pp. 759-768, 1942.
    [20] 冀振華、趙平 “腫瘤臨床綜合治療新概念” 清華大學出版社,西元2006年。
    [21] 李國賓、林錫璋、黃聖傑 “高頻磁場感應加熱式熱療針” 中華民國專利,公開號201008543,西元2008年。
    [22] 新癌症腫瘤醫療技術團隊 “先進腫瘤治療技術”,西元2001年。
    [23] 裴鑫、夏玉卿 “電熱針治療淺表腫瘤療效及作用機制的探討” 中華實用醫藥雜誌,西元2005年。
    [24] 劉明峰 “全橋相移式柔性切換負載並聯共振電流型感應加熱器之設計與研製” 私立中原大學電機工程學系碩士論文,西元2004年。
    [25] 蘇煒城 “高頻感應加熱器之控制設計與實際量測” 私立中原大學電機工程學系碩士論文,西元1998年。
    [26] 陳雅君 “LLC諧振轉換器之設計與研製” 國立成功大學電機工程學系碩士論文,西元2009年。
    [27] 林春方 “高頻電子線路” 電子工業出版社,西元2010年。
    [28] 范家瑞 “電磁感應技術應用於模具快速加熱系統” 國立成功大學機械工程學系碩士論文,西元2008年。
    [29] St. Luke's Medical Center-Global City, Radiofrequency Ablation (RFA) of Liver Tumors, 2013, from http://www.stlukesmedicalcenter.com.ph/aboutus/technology/radiofrequency-ablation--rfa--of-liver-tumors.
    [30] U.S. Department of Health & Human Sevices, Microwave Endometrial Ablation (MEA) System, 2013, from http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm082313.htm.
    [31] N. Stenning & Co. Pty. Ltd., Microwave Tissue Ablation, 2011, from
    http://www.nstenning.com.au/news/microwave-tissue-ablation-mina-2011.

    下載圖示 校內:2019-08-11公開
    校外:2019-08-11公開
    QR CODE