| 研究生: |
洪偉寧 Hung, Wei-Ning |
|---|---|
| 論文名稱: |
開發適用於染料敏化太陽能電池之印刷式電解質及其在不同光照條件下的應用 Development of Printable Electrolytes for Dye-Sensitized Solar Cells and Its Application on Different Lighting Conditions |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 染料敏化太陽能電池 、印刷式電解質 、印刷製程 、室內光發電 |
| 外文關鍵詞: | dye-sensitized solar cells, printing process, electricity generation under indoor lighting |
| 相關次數: | 點閱:94 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在開發適用於染料敏化太陽能電池(DSSCs)的印刷式電解質,探討此電解質應用在太陽光及室內光源下的最佳條件。為了降低溶劑在電解質印刷製程上揮發,本研究使用低揮發性的3-甲氧基丙腈(MPN) 為溶劑,製備含I-/I3- 氧化還原對的電解液,再利用聚氧化乙烯(PEO)及聚偏氟乙烯(PVDF)作為增稠劑,藉由聚合物含量的調控來提升電解質之黏度,使電解質具有可印刷的特性。實驗結果顯示,要使電解質具有可印刷性質,PEO是必要的成份, PVDF的添加則可以提高電解質的導電性以及電池的光電轉化效率,但太多PVDF的添加則會使電解質成為膠態,失去可印刷性質。藉由聚合物含量的調控得知,在添加9wt%高分子共混物PEO/PVDF的比例為8:2時,此印刷式電解質所製備的元件在標準光源(100 mW/cm2)下有最佳的光電轉化效率(8.32%)。若再以二氧化鈦奈米粒子(4wt %)作為此電解質的添加劑,元件效率可再提升至8.91%,高於液態元件的表現。此一印刷式電池於60oC及高濕高溫環境下進行穩定性測試,經過500小時後元件皆可維持良好的穩定度。為了將印刷式DSSCs應用於室內光源發電,需要對電解質中之碘濃度與二氧化態薄膜厚度進行調整,結果顯示此一電池在200 lux下之輸出功率密度可達9.74μW/cm2。此一研究亦將上述小元件探討所得之最佳條件應用於次模組元件之製作,在標準光源下陣列式次模組之轉換效率可達6.45%,在200 lux室內光源下採用大面積次模組之輸出功率密度可達7.84μW/cm2。
The purpose of this study is to develop printable electrolytes for dye-sensitized solar cell (DSSC) application and, furthermore, investigate the optimal electrolyte compositions for both sunlight and twilight illuminations. To avoid the evaporation of the electrolyte in the printing process, 3-Methoxypropionitrile (MPN) is used as the solvent to prepare the electrolyte containing I-/I3- redox couple. Poly(ethylene oxide) (PEO) and poly(vinylidene fluoride) (PVDF) are utilized as viscous agents to regulate the viscosity of the electrolyte pastes for operating by the printing process. The results show that PEO is a required material to prepare the electrolyte pastes, and the addition of PVDF can increase the ion conductivity of the electrolytes. However, addition a high amount of PVDF will lead to the gelatinization of the electrolyte which cannot be operated by printing process. The optimal PEO/PVDF ratio and their overall addition amount for preparing the electrolyte are 8:2 and 9 wt%, respectively. The corresponding cell can achieve a power conversion efficiency (PCE) of 8.32% under 100 mW/cm2. When 4wt% TiO2 nanoparticles is introduced as fillers of the printable electrolyte, the PCE can further increase to 8.91% which is higher than that obtained for the corresponding liquid cell. The DSSCs prepared by the printing process are stable under the stability test at high temperature (65oC)/high humidity conditions. By adjusting the composition of the redox couple, the prepared DSSCs are also applied for operation under room-light illumination. A power density (Pmax) of 9.74μW/cm2 is obtained for the cell under 200 lux illumination. Finally, the printable electrolyte is also applied to fabricate sub-module cells and a PCE of 6.45% is achieved under 100 mW/cm2. Under 200 lux illumination, the sub-module cell has a Pmax of 7.84μW/cm2.
[1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell," Nature, vol. 261, p. 402-403, 1976.
[2] B. O’Regan and M. Grätzel, "A Low-cost, High-efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films," Nature, vol. 353, p. 737-739, 1991.
[3] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p. 3-14, 2004.
[4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, p. 6595-6663, 2010.
[5] Y.-Y. Kuo and C.-H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochimica Acta, vol. 91, p. 337-343, 2013.
[6] H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, p. 30-36, 2010.
[7] S. Ito, N. L. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chem Commun (Camb), p. 4004-4006, 2006.
[8] M. Grätzel, "Photoelectrochemical Cells.," Nature, vol. 414, p. 338-344, 2001.
[9] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications," Nano Letter, vol. 8, p. 3781-3786, 2008.
[10] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film," The Journal of Physical Chemistry B, vol. 110, p. 2087-2092, 2006.
[11] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, p. 510-519, 1961.
[12] A. Hagfeldt and M. Grätzel, "Molecular Photovoltaics," Accounts of Chemical Research, vol. 33, p. 269-277, 2000.
[13] M. K. Nazeeruddin, A. Kay, I.Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, et al., "Conversion of Light to Electricity by cis-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes," Journal of the American Chemical Society, vol. 115, p. 6382-6390, 1993.
[14] M. K. Nazeeruddin, P. Péchy, and M. Grätzel, "Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato–Ruthenium Complex," Chemical Communications, vol. 18, p. 1705-1706, 1997.
[15] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Sellon, G. Viscardi, P. Liska, et al., "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers," Journal of American Chemical Society, vol. 127, p. 16835-16847, 2005.
[16] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Grätzel, "A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells," Journal of American Chemical Society, vol. 127, p. 808-809, 2004.
[17] C.-Y. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C.-h. Ngoc-le, et al., "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells," ACS nano, vol. 3, p. 3103-3109, 2009.
[18] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, et al., "High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS nano, vol. 4, p. 6032-6038, 2010.
[19] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. Diau, and M. Gratzel, "Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins," Angew Chem Int Ed Engl, vol. 49, p. 6646-9, 2010.
[20] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," science, vol. 334, p. 629-634, 2011.
[21] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nat Chem, vol. 6, p. 242-247, 2014.
[22] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, et al., "High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness," Advanced Materials, vol. 18, p. 1202-1205, 2006.
[23] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, et al., "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary pi-conjugated spacer," Chem Commun (Camb), p. 2198-2200, 2009.
[24] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, et al., "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chemistry of Materials, vol. 22, p. 1915-1925, 2010.
[25] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar energy materials and solar cells, vol. 70, p. 85-101, 2001.
[26] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized tio2 solar cell (1): the case of solar cells using the I-/I3-redox couple," The Journal of Physical Chemistry B, vol. 109, p. 3480-3487, 2005.
[27] R. Harikisun and H. Desilvestro, "Long-term stability of dye solar cells," Solar Energy, vol. 85, p. 1179-1188, 2011.
[28] H. Greijer Agrell, J. Lindgren, and A. Hagfeldt, "Coordinative interactions in a dye-sensitized solar cell," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, p. 23-27, 2004.
[29] F. Sauvage, S. Chhor, A. Marchioro, J. E. Moser, and M. Graetzel, "Butyronitrile-based electrolyte for dye-sensitized solar cells," J Am Chem Soc, vol. 133, p. 13103-13109, 2011.
[30] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Transactions, vol. 41, p. 3111-3115, 2012.
[31] S. M. Feldt, G. Wang, G. Boschloo, and A. Hagfeldt, "Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples," The Journal of Physical Chemistry C, vol. 115, p. 21500-21507, 2011.
[32] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, vol. 12, p. 1662-1665, 2010.
[33] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, p. 6267-6273, 2012.
[34] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I 2," Solar Energy Materials and Solar Cells, vol. 63, p. 267-273, 2000.
[35] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, et al., "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," Journal of The Electrochemical Society, vol. 153, p. A2255-A2261, 2006.
[36] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, et al., "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," Journal of Materials Chemistry, vol. 20, p. 4067-4073, 2010.
[37] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, vol. 5, p. 165-172, 2010.
[38] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., vol. 46, p. 5367-5369, 2010.
[39] F. Cao, G. Oskam, and P. C. Searson, "A solid state, dye sensitized photoelectrochemical cell," The Journal of Physical Chemistry, vol. 99, p. 17071-17073, 1995.
[40] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2 photoelectrochemical cells," Nano letters, vol. 2, p. 1259-1261, 2002.
[41] P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte," Chem. Commun., p. 2972-2973, 2002.
[42] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nat Mater, vol. 2, p. 402-407, 2003.
[43] C.-L. Chen, H. Teng, and Y.-L. Lee, "Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate)," J. Mater. Chem., vol. 21, p. 628-632, 2011.
[44] C. L. Chen, H. Teng, and Y. L. Lee, "In situ gelation of electrolytes for highly efficient gel-state dye-sensitized solar cells," Adv Mater, vol. 23, p. 4199-204, 2011.
[45] C. L. Chen, T. W. Chang, H. Teng, C. G. Wu, C. Y. Chen, Y. M. Yang, et al., "Highly efficient gel-state dye-sensitized solar cells prepared using poly(acrylonitrile-co-vinyl acetate) based polymer electrolytes," Phys Chem Chem Phys, vol. 15, p. 3640-3645, 2013.
[46] R.-X. Dong, S.-Y. Shen, H.-W. Chen, C.-C. Wang, P.-T. Shih, C.-T. Liu, et al., "A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 1, p. 8471-8478, 2013.
[47] C. Wang, L. Wang, Y. Shi, H. Zhang, and T. Ma, "Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells," Electrochimica Acta, vol. 91, p. 302-306, 2013.
[48] S.-J. Seo, H.-J. Cha, Y. S. Kang, and M.-S. Kang, "Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells," Electrochimica Acta, vol. 145, p. 217-223, 2014.
[49] T.-C. Wei, H.-H. Chen, Y.-H. Chang, and S. P. Feng, "Hydrophobic Electrolyte Pastes for Highly Durable Dye-Sensitized Solar Cells," Journal of The Electrochemical Society, vol. 161, p. H214-H219, 2014.
[50] 蘇頌傳, "可印刷式電解質的製備及其在染料敏化太陽能電池應用之研究," 國立成功大學, 2014.
[51] N. Sridhar and D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," in 26th European photovoltaic solar energy conference and exhibition, p. 232-236, 2011.
[52] C.-L. Wang, P.-T. Lin, Y.-F. Wang, C.-W. Chang, B.-Z. Lin, H.-H. Kuo, et al., "Cost-Effective Anthryl Dyes for Dye-Sensitized Cells under One Sun and Dim Light," The Journal of Physical Chemistry C, vol. 119, p. 24282-24289, 2015.
[53] I. Mathews, P. J. King, F. Stafford, and R. Frizzell, "Performance of III–V Solar Cells as Indoor Light Energy Harvesters," IEEE Journal of Photovoltaics, vol. 6, p. 230-235, 2016.
[54] F. De Rossi, T. Pontecorvo, and T. M. Brown, "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, vol. 156, p. 413-422, 2015.
[55] H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, et al., "Efficient dye-sensitized solar cell sub-modules," Current Applied Physics, vol. 10, p. S157-S160, 2010.
[56] Y. Liu, H. Wang, H. Shen, and W. Chen, "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Applied Energy, vol. 87, p. 436-441, 2010.
[57] W. J. Lee, E. Ramasamy, and D. Y. Lee, "Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 93, p. 1448-1451, 2009.
[58] T.-C. Wei, Y.-H. Chang, S.-P. Feng, and H.-H. Chen, "A semi-experimental method for fast evaluation of the performance of grid-type dye-sensitized solar module," Int. J. Electrochem. Sci, vol. 8, p. 9256-9263, 2013.
[59] X. Huang, Y. Zhang, H. Sun, D. Li, Y. Luo, and Q. Meng, "A new figure of merit for qualifying the fluorine-doped tin oxide glass used in dye-sensitized solar cells," Journal of Renewable and Sustainable Energy, vol. 1, p. 063107, 2009.
[60] R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, et al., "New interdigital design for large area dye solar modules using a lead-free glass frit sealing," Progress in Photovoltaics: Research and Applications, vol. 14, p. 697-709, 2006.
[61] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module," in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, p. 2C-5O, 2011.
[62] A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 46, p. 3457-3466, 2001.
[63] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," The Journal of Physical Chemistry B, vol. 110, p. 13872-13880, 2006.
[64] K.-M. Lee, V. Suryanarayanan, and K.-C. Ho, "Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells," Journal of Power Sources, vol. 188, p. 635-641, 2009.
[65] C. Wu, S. Guo, L. Jia, S. Han, B. Chi, J. Pu, et al., "Mechanistic insight into the individual ionic transportation in polymer electrolytes for use in dye-sensitized solar cells," RSC Advances, vol. 3, p. 13968-13975, 2013.
[66] Q. Wang, J.-E. Moser, and M. Grätzel, "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells," The Journal of Physical Chemistry B, vol. 109, p. 14945-14953, 2005.
[67] M.-S. Kang, K.-S. Ahn, and J.-W. Lee, "Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes," Journal of Power Sources, vol. 180, p. 896-901, 2008.
[68] J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, and G. Cao, "Effects of Iodine Content in the Electrolyte on the Charge Transfer and Power Conversion Efficiency of Dye-Sensitized Solar Cells under Low Light Intensities," The Journal of Physical Chemistry C, vol. 116, p. 25727-25733, 2012.
[69] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature materials, vol. 2, p. 402-407, 2003.