簡易檢索 / 詳目顯示

研究生: 紀佐運
Chi, Zuo-Yun
論文名稱: 起始原料對於二氧化鈦於水熱環境之相轉換與形貌變化之探討
Influence of starting materials properties on the phase and morphology evolutions of titania nanoparticles under hydrothermal treatment
指導教授: 吳毓純
Wu, Yu-Chun
共同指導教授: 黃啟原
Huang, Chi-Yuen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 95
中文關鍵詞: 水熱合成反應溶膠-凝膠法奈米粒子相變行為形貌結構演化
外文關鍵詞: hydrothermal reaction, sol-gel, post-treatment, acid washing, nanotube
相關次數: 點閱:119下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點在探討二氧化鈦在水熱反應中之相變行為與形貌演化機制,利用水熱合成環境110℃持溫反應20小時,改變二氧化鈦不同起始狀態。以溶膠-凝膠法製備粒徑約為5 nm之銳鈦礦(anatase)奈米顆粒並與粒徑約為50 nm的商業化anatase粉末及經過熱處理所獲得之金紅石(rutile)粉末各別進行水熱合成反應,比較前導物之相異起始相與粒徑大小的水熱反應行為。此外,利用溶膠-凝膠法製備TiO2-SiO2的二元系統,研究SiO2的引入對於二氧化鈦在水熱環境中之相變與型態演化之行為影響。於同條件參數110℃反應20小時之水熱合成下,相異粒徑大小與不同二氧化鈦起始相之樣品由XRD分析結果可知二氧化鈦會以水熱中間相生成,水熱中間相可藉由水熱溫壓與反應時間之調控而取得,且此水熱中間相決定了水熱反應後之產物形態,若水熱反應完全即可以取得奈米管結構,反之水熱反應未完全則以層狀(lamellar)結構存在,經酸洗處理後則蜷曲成長管狀結構,針對此行為可推導出一系列之水熱反應模式,解讀二氧化鈦於水熱反應下其形貌演變關係。

    TiO2 nanoparticles were synthesized by sol-gel process using titanium isopropoxide as precursors and doped with different amount of SiO2 from 10 to 50%. Crystallized anatase nanocrystals were obtained without needing any thermal treatment and were homogeneously dispersed in amorphous silica matrix. Different amount of acetylacetone addition allowed to modify the size of Ti-rich clusters that dominates the requiring temperature for the A-R phase transformation. Due to the obstruction of silica matrix, a critical size of anatase crystal of around 8-10 nm is essential to lead a phase transformation from anatase to rutile, otherwise anatase phase remains even heating at high temperature up to 1400oC. Moreover, hydrothermal treatment was applied to the sol-gel derived TiO2-SiO2 system, different phase TiO2 (anatase and rutile) and various particle size anatase TiO2 powder in NaOH aqueous solution (10M) at 110oC for 20h to form the interphase titanate. Microstructure and the interphase titanate under the hydrothermal reaction were found to be major keys to determine the morphology of sodium titanate. Crystallized anatase crystals were obtained by removing the Na+ ions by acid washing treatments. The shape of Na2Ti6O13 crystals tended to develop from sheet-like to rod-like shape when Na+ ions was gradually removed and when the amount of anatase increased simultaneously. The morphological evolution of Na2Ti6O13 and the phase transformation behavior of TiO2 according to various operation conditions will be also presented in this work.

    總目錄 中文摘要 I Abstract II 誌 謝 III 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章 理論基礎 3 2.1 二氧化鈦晶體結構 3 2.2 溶膠-凝膠法 5 2.2.1 TiO2-SiO2二元複合材料 7 2.3 成長一維奈米結構之合成法 7 2.3.1 模板輔助成長法 7 2.3.2 介面活性劑合成法 8 2.3.3 電場輔助轉向法 8 2.4 水熱法 12 2.4.1 水熱法原理 12 2.4.2 水熱法優點 13 2.4.3 成長一維結構材料 13 第三章 實驗流程與研究方法 17 3.1 實驗藥品 17 3.2 起始原料製備 17 3.2.1 小粒徑anatase相TiO2製備 17 3.2.2 TiO2-SiO2二元系統製備 18 3.2.3 大粒徑anatase與rutile TiO2 20 3.3 實驗方法與流程 20 3.3.1 實驗流程 20 3.3.2 水熱合成反應 23 3.3.3 水洗程序 23 3.3.4 酸洗程序 24 3.3.5熱處理程序 24 3.3.6 定量分析 24 3.4 分析與鑑定 27 3.4.1 相鑑定 27 3.4.2晶粒粒徑量測 29 3.4.3 傅立葉轉換紅外線光譜儀分析 29 3.4.4 拉曼光譜分析 30 3.4.5 穿透式電子顯微鏡 30 第四章、結果與討論 32 4-1 TiO2-SiO2之雙相複合材料 32 4-2 水熱反應之生成相 43 4-3水洗酸洗之影響 50 4-4添加SiO2對TiO2水熱反應之影響 59 4-5 結晶性之探討 66 4-6 不同二氧化鈦起始相anatase與rutile 72 4-7 晶粒尺寸影響 83 4-8 水熱反應程度之探討 84 4-9 奈米管之生成 87 第五章 結論 89 參 考 文 獻 93

    參 考 文 獻
    [1] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Adv. Mater., 11
    (1999)1307.
    [2] Y. Yu, D. S. Xu, Appl. Cataly. B, 73 (2007) 166.
    [3] K. Kakiuchi, E. Hosono, H. Imai, T. Kiura, S. Fujihara, J. Cryst. Growth, 293 (2006) 541.
    [4] J. Jitputti, Y. Suzuki, S. Yoshikawa, Cataly. Commun., 9 (2008) 1265.
    [5] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Dalton
    [5] Tans., 2003, 3898-3901.
    [6] Q. Chen, W. Zhou, G. Du, L. M. Peng, Adv. Mater., 14 (2002) 17.
    [7] Q. Wang, E. C. Dickey, J. Mater. Res., 19 (2004) 2.
    [8] S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou, American Phys, [8] Society, Vol. 91, Number 25
    [9] Wang W., Varghese O. K., Paulose M., Grimes C. A., J. Mater. Res. 19 (2004) 417.
    [10] K. Byrappa, M. Yoshimura, “Handbook of Hydrothermal Technology” p.651-
    [10] p.659
    [11] Yin H., Wada Y., Kitamura T., Kambe S., Murasawa S., Mori H., Sakata T.,
    [12] Yanagida S., J. Mater. Chem., 11 (2001) 1694.
    [12] Zhang Q.-H., Gao L., Guo J.-K, NanoStructured Materials, 11 (1999) 1293.
    [13] C. Jeffrey Brinker, George W. Scherer, “SOL-GEL SCIENCE”.
    [14] B.E. Yoldas, J.Non-Cryst. Solids, 81 (1980) 38-39.
    [15] C. H. Kwon, J. H. Kim, I. S. J., H. Shin, K. H. Yoon, Ceramics International 29
    [15] (2003) 851
    [16] S. Vies, C. Meunier, Ceramic International 34 (2008) 37
    [17] J. Ren, Z. Li, S. Liu, Y. Xing, K. Xie, Springer Science & Business Media, LLC 2008.
    [18] C. Anderson, A. Bard, J. Phys. Chem., 99 (1995) 9882
    [19] M. Zhang, L. Shi, S. Yuan, Y. Zhao, J. Fang, J. Colloid. Inter. Sci., 330 (2009) [19] 113
    [20] Hoffman M. R.; Martin S. T.; Choi W.; Bahnemann D. W., Chem. Rev., 95
    (1995) 69.
    [21] Hagfeldt A.; Grätzel M., Chem. Rev., 95 (1995) 49.
    [22] Y. C. Wu, S. Parola, O. Marty, J. Mugnier, Opt. Mater., 27 (2004) 21-27
    [23] Y. C. Wu, S. Parola, O. Marty, M. Villanueva-Ibanez, and J. Mugnier, Opt. Mater., [22] 27 (2005) 1471
    [24] E. Brinley, S. Seal, R. Folks, E. Braunstein, L. Kramer, J. Vac. Sci. Technil.,
    4 (2006) 24.
    [25] M. Zhang, L. Shi, S. Yuan, Y. Zhao, J. Fang, Journal of Colloid and Interface Science 330 (2009) 113-118
    [26] M. Andrianainarivelo, R. Corriu, D. Leclercq, P. H. Mutin, A. Vioux, J. Mater. Chem., 6(10) (1996) 1656-1671
    [27] Li-Lan Yang, Yi-Sheng Lai, J. S. Chen, J. Mater. Res., 20 (2005) 11.
    [28] Kaishu Guan, Surface & Coatings Technology 191 (2005) 155-160
    [29] M. Zhang, Y. Bando, K. wada, Journal of materials science, 20 (2001) 167-170.
    [30] X. Lu, H. Mao, W. Zhang, Nanotechnology, 18 (2007) 025604.
    [31] A. P. Alivisatos et al., Nature 404, 59, 2000.
    [32] A. P. Alivisatos et al., J. Am. Chem. Soc., 122, 12700, 2000.
    [33] A. Matsuda, M. Sakai, T. Kogure, K. Tadanaga, M. Tatsumisago, Journal of the
    [28] ceramic society of Japan, 114 [1] (2006) 26-35.
    [34] A. N. Lobachev, “Crystallization Processes Under Hydrothermal Conditions”, [29] Consultants Bureau.New York-London.
    [35] Wadsley, A. D., Acta Cryst., 17 (1964) 623.
    [36] Andersson. S. and Wadsley, A. D., Acta Chem. Scand., 15 (1961) 663.
    [37] Andersson. S. and Wadsley, A. D., Acta Cryst., 15 (1962) 194.
    [38] Andersson. S. and Wadsley, A. D., Acta Cryst., 15 (1962) 201.
    [39] K. Byrappa, M. Yoshimura, “Handbook of Hydrothermal Technology” p.656-
    [10] p.670
    [40] Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Langmuir 14
    (1998) 3160.
    [41] Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Adv. Mater. 11
    (1999) 1307.
    [42] G. H. Du, Q. Chen, R. C., Z. Y. Yuan, L.-M. Peng, App. Phys. Lett., vol.
    79 (2001) 22.
    [43] Zhang Q., Gao L., Sun J., Zheng S., Chem. Lett. 226 (2002).
    [44] Wang Y. Q., Hu G. Q., Duan X. F., Sun H. L., Xue Q. K., Chem. Phys. Lett. 365,
    427, (2002).
    [45] Yao B. D., Chan Y. F., Zhang X. Y., Zhang W. F., Yan Z. T., Wang N., Appl.
    Phys. Lett. 82 (2003) 281.
    [46] Tsai C. C., Teng H. S., Chem. Mater. 16 (2004) 4352.
    [47] Wang W., Varghese O. K., Paulose M., Grimes C. A., J. Mater. Res. 19
    (2004) 417.
    [48] Y.Yu, D. Xu, App. Cataly. B, 73 (2007) 166-171.
    [49] T. J. Boyle, T. N. Lambert, H. D. Pratt III, P. Lu, J. M. Griego, N. Bush, C. A.
    Chavez, M. Welk, J. Mat. Sci. 45 (2010) 1744-1759.
    [50] J.-N. Nian, H. Teng, J. Phys. Chem. B 110 (2006) 4193-4198.
    [51] Y. Yu, D. Xu, Applied Catalysis B: Environmental 73 (2007) 166-171.
    [52] K. R. Zhu, Y. Yuan, M. S. Zhang, J. M. Hong, Y. Deng, Z. Yin, Solid Statae
    [41 ]Communications 144 (2007) 450-453.
    [53] G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L.-M. Peng, Applied Physics, 79
    (2001) 22.
    [54] M. A. Khan, O-Bong Yang, Crystal Growth & Design 9 (2009) 1767-1774.
    [55] J. Ren, Z. Li, S. Liu, Y. Xing, K. Xie, Springer Science & Business Media, LLC 2008.
    [56] M. Burgos, M. Langlet, Thin Solid Films 349 (1999) 19.
    [57] A. S. Attar, M. S. Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, J Mater Sci., 43 (2008) 1723.
    [58] A. A. Gribb, J. F. Banfield, Am. Mineral. 82 (1997) 717.
    [59] K. Guan, Surface & Coatings Technology 181 (2005) 155-160.
    [60] H. Tamon, T. Kitamura, M. Okazaki, Colloid and Interface Sci. 197 (1998) 353-359.
    [61] B. Yoldas, Journal of Materials Science 21 (1986) 1087-1092.
    [62] S. Zhang, L.-M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou, Phys. Rev. Lett. 91 (2003) 256103.
    [63] X. Sun, Y. Li, Chem. Eur. J. 9 (2003) 2229.
    [64] Z.-Y Yuan, B.-L. Su, Colloids Surf., A 241 (2004) 173.
    [65] Sugita, M.; Tsuji, M.; Abe, M. Bull. Chem. Soc. Jpn. 63 (1990) 1978.
    [66] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang,
    Dalton Tans. (2003) 3898.
    [67] R. Ma, Y. Bando, T. Sasaki, Chem. Phys. Lett. 380 (2003) 577.
    [68] R.A. Zarate, S. Fuentes, V. M. Fuenzalida, LNLS 2006 Activity Report
    [69] K. Yoshida, L. Miao, N. Tanaka, S. Tanemura, Nanotechnology 20 (2009) 405709.
    [70] J. C. Parker, R.W. Siegel, J. Mater. Res., 5 (1990) 6.
    [71] K. Byrappa, M. Yoshimura, “Handbook of Hydrothermal Technology” p.655-
    [10] p.657
    [72] W. Wang, O. K. Varghese, M. Paulose, C. A. Grimes, J. Mater. Res., 19 (2004) 2.
    [73] M. Nori, Y. Kumagai, K. Matsunaga, I. Tanaka, Phys. Rev. B 79 (2009) 144117.
    [74] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11 (1999) 15.

    下載圖示 校內:2013-08-25公開
    校外:2015-08-25公開
    QR CODE