簡易檢索 / 詳目顯示

研究生: 謝宇峰
Hsieh, Yu-Feng
論文名稱: 使用非平衡格林函數模擬奈米場效電晶體的量子傳輸
Quantum Transport Modeling for Nanoscale FET with Non-Equilibrium Green’s Function Formalism
指導教授: 高國興
Kao, Kuo-Hsing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 32
中文關鍵詞: 緊束縛理論非平衡格林函數能帶結構量子傳輸雙閘極金氧半場效電晶體
外文關鍵詞: Tight-binding theory, non-equilibrium Green’s functions, band structure, quantum trnasport, double-gate MOSFETs
相關次數: 點閱:100下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著互補金屬氧化物半導體(CMOS)技術的進步,元件尺寸已經進入奈米等級。電子元件在運作時有著更顯著的波特性。非平衡格林函數(NEGF)方法在處理奈米級電子元件的量子效應是一種實用的分析方法。
    在本論文的開始,我們利用緊束縛理論來計算不同厚度的矽能帶結構。再從能帶結構中獲得能帶間隙、縱向及橫向的等效質量。我們通過使用緊束縛理論將量子限制效應納入能帶結構計算中,探討量子參數對雙柵極金氧半場效應電晶體(DG MOSFET)的影響。利用nanoMOS 4.0模擬器,我們使用量子彈道傳輸模型計算DG MOSFET中的漏極電流。
    最後,我們為了抑制短通道效應,選擇穿隧能障接面(TBJ)MOSFET結構。為了進一步提高TBJ MOSFET的性能,我們嘗試使用單能障結構。當單能障設置於源極端時,它仍然具有抑制短通道效應的能力,並且具有比TBJ MOSFET更高的驅動電流。

    As complementary metal–oxide–semiconductor (CMOS) technology progresses, device dimensions have been scaled into the nanometer regime. The electronic devices would show more pronounced wave characteristics of carriers when operating. The non-equilibrium Green’s function (NEGF) approach, which is a powerful conceptual tool and a practical analysis method to treat nanoscale electronic devices with quantum mechanical.
    At the start of this thesis, we calculated the band structure based on the tight-binding theory. The calculations of band structure used to extract band gap, longitudinal and transverse effective electron masses. Then, we explore the impact of the parameter of confinement modulated on double-gate (DG) MOSFET, by explicitly incorporating the quantum confinement effects in the band structure calculations using the tight-binding theory. Using the nanoMOS 4.0 simulator, we calculate the drain current in DG MOSFET using the quantum ballistic transport model.
    At last, we choice the tunneling barrier junction (TBJ) MOSFET structure in order to suppress the short channel effects (SCE). To further enhance the TBJ MOSFET performance, we try to use single barrier structure. The single barrier at source structure which still have ability of SCE suppression, and have higher drive current than TBJ MOSFET.

    摘要....................................................I Abstract...............................................II 誌謝..................................................III Contents...............................................IV Table captions..........................................V Figure captions........................................VI Chapter Ⅰ Introduction..................................1 1-1 CMOS Scaling........................................1 1-2 Quantum Mechanical Effect...........................3 1-3 Electron Transport Models...........................3 1-4 Research Objective and Dissertation Outline.........4 Chapter Ⅱ Theoretical Approach..........................6 2-1 Tight-Binding Theory................................6 2-2 Tight-Binding Theory for Finite Dimensional Structure......13 2-3 Results of the Full Band Structure Calculation.....16 2-4 Non-Equilibrium Green’s Function Method............18 Chapter Ⅲ Impact of One Dimensional Confinement in Silicon Double Gate n-MOSFET...........................21 3-1 Simulated Device Structure.........................21 3-2 Results and Analysis...............................22 3-3 Summary............................................23 Chapter Ⅳ Tunneling Barrier Junction MOSFET...........24 4-1 Resonant Tunneling Effect..........................24 4-2 Simulated Device Structure.........................24 4-3 Results and Analysis...............................25 4-4 Summary............................................28 Chapter Ⅴ Conclusions and Future Work..................29 5-1 Conclusions........................................29 5-2 Future Work........................................29 References.............................................30

    References in chapter 1
    [1]Frank schwierz, "Graphene transistors", Nature Nanotechnology 5, 487–496, 2010.
    [2]D. Kahng, et al., "Silicon-silicon dioxide field induced surface devices", Proc. IRE-AIEE Solid-State Device Res. Conf., Pittsburgh, PA, 1960.
    [3]Gordon E. Moore, "Cramming more components onto integrated circuits", Electronics, pages 114–117, April 19, 1965.
    [4]G. E. Moore, "Cramming more components onto integrated circuits", Proceedings of the IEEE, 86(1):82–85, Jan. 1998.
    [5]International technology roadmap for semiconductors, 2001 edition. www.itrs.net, 2001.
    [6]International technology roadmap for semiconductors, 2003 edition. www.itrs.net, 2003.
    [7]S. E. Thompson, et al., "In search of ”forever,” continued transistor scaling one new material at a time", IEEE Transactions on Semiconductor Manufacturing, 18(1):26–36, Feb. 2005.
    [8]H. Wakabayashi, et al., "Transport properties of sub-10-nm planar-bulk-CMOS devices", IEEE International Electron Devices Meeting, 2004. IEDM Technical Digest., pages 429–432, Dec. 2004.
    [9]Robert Chau, et al., "Silicon nanotransistors for logic applications", Physica E, 19(1/2):1–5, July 2003.
    [10]B. Doris, et al., "Extreme scaling with ultra-thin Si channel MOSFETs", International Electron Devices Meeting, 2002. IEDM ’02. Digest., pages 267–270, Dec. 2002.
    [11]K. Uchida, et al., "Experimental study on carrier transport mechanisms in double- and single-gate ultrathin-body MOSFETs coulomb scattering, volume inversion, and δTSOI-induced scattering", IEEE International Electron Devices Meeting, 2003. IEDM ’03 Technical Digest., pages 33.5.1–33.5.4, Dec. 2003.
    [12]R. S. Shenoy, et al., "Optimization of extrinsic source/drain resistance in ultrathin body double-gate FETs", IEEE Transactions on Nanotechnology, 2(4):265–270, Dec. 2003.
    [13]R. S. Shenoy, et al., "Novel process for fully self-aligned planar ultrathin body double gate FET", Proceedings of IEEE International SOI Conference, 2004, pages 190–191, 2004.
    [14]B. S. Doyle, et al., "High performance fully-depleted tri-gate CMOS transistors", IEEE Electron Device Letters, 24(4):263–265, April 2003.
    [15]B. Doyle, et al., "Tri-gate fully-depleted CMOS transistors: fabrication, design and layout", Digest of Technical Papers. 2003 Symposium on VLSI Technology, pages 133–134, June 2003.
    [16]Y. S. Chauhan, et al., "BSIM - Industry Standard Compact MOSFET Models", IEEE European Solid-State Device Research Conference, Bordeaux, France, Sept. 2012.
    [17]S.M. Sze. Physics of Semiconductor Devices. Wiley, New York, 1981.
    [18]Chihiro Hamaguchi. Basic Semiconductor Physics. Springer Science & Business Media, 2009.
    [19]Peter YU, Manuel Cardona. Fundamentals of Semiconductors : Physics and Materials Properties. Springer Science & Business Media, 2010.
    References in chapter 2
    [1]Timothy B. Boykin, Gerhard Klimeck, and Fabiano Oyafuso, "Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization", Phys. Rev. B 69, 115201 (2004).
    [2]D. N. Talwar and C. S. Ting, "Tight-binding calculations for the electronic structure of isolated vacancies and impurities in III-V compound semiconductors", Phys. Rev. B 25, 2660 (1982).
    [3]Jean-Marc Jancu, Reinhard Scholz, Fabio Beltram, and Franco Bassani, "Empirical spds* tight-binding calculation for cubic semiconductors : General method and material parameters", Phys. Rev. B 57, 6493 (1998).
    [4]F. Raouafi, R. Ben Chamekh, J. Even, and J.-M Jancu, "Electronic and Optical Properties in the Tight-Binding Method ", Chinese Journal of Physics, Vol. 52, No. 4, pages 1376–1386.
    [5]W. Matthew C. Foulkes and Roger Haydock, "Tight-binding models and density-functional theory", Phys. Rev. B 39, 12520 (1989).
    [6]J. A. Stovneng and P. Lipavsky, "Multiband tight-binding approach to tunneling in semiconductor heterostructures: Application to X transfer in GaAs", Phys. Rev. B, 49 (23) : 16494–16504, 1994.
    [7]Timothy B. Boykin, Gerhard Klimeck, and Fabiano Oyafuso, "Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization", Phys. Rev. B 69, 115201 (2004).
    [8]Yaohua P. Tan, Michael Povolotskyi, Tillmann Kubis, Timothy B. Boykin, and Gerhard Klimeck, "Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution", Physical Review B 92, 085301 (2015).
    [9]S. Datta, Electronic Transport in Mesoscopic Systems. Cambridge, UK: Cambridge Univ. Press, 1997.
    [10]S. Datta, Quantum Transport: Atom to Transistor. Cambridge, UK: Cambridge Univ. Press, 2005.
    [11]S. Datta, "Nanoscale device modeling: The Green’s function method", Superlatt. Microstruct., vol. 28, p. 253, 2000.
    [12]M. Büttiker, "Four-terminal phase coherent conductance", Phys. Rev. Lett., vol. 57, p. 1761, 1986.
    References in chapter 3
    [1]nanoHUB.org [online]. Available: http://nanohub.org/tools/nanomos/
    [2]Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, and Mark S. Lundstrom, "nanoMOS 2.5 : A Two-Dimensional Simulator for Quantum Transport in Double-Gate MOSFETs", IEEE Trans. Electron Devices, 50 1914 (2003).
    [3]Antonio Martinez, Karol Kalna, Peter V. Sushko, Alex L. Shluger, John R. Barker, and Asen Asenov, "Impact of Body-Thickness-Dependent Band Structure on Scaling of Double-Gate MOSFETs : A DFT/NEGF Study", IEEE Trans. Nanotechnology, vol. 8, no. 2, pp. 159–166, Mar. 2009.
    [4]A. Rahman, G. Klimeck, T. B. Boykin, and M. Lundstrom, “Bandstructure effects in ballistic nanoscale MOSFETs,” in IEDM Tech. Dig., 2004, pp. 139–142.
    [5]A. Rahman, G. Klimeck, and M. Lundstrom, “Novel channel materials for ballistic nanoscale MOSFETs-bandstructure effects in,” in IEDM Tech. Dig., 2004, pp. 445–448.
    References in chapter 4
    [1]Hidehiko Nakajima, et al., "Simulation Models for Silicon-on-Insulator Tunneling-Barrier-Junction Metal-Oxide-Semiconductor Field-Effect Transistor and Performance Perspective", Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 1206–1211.
    [2]Naoto Matsuo, et al., "Extension of Physical Limit of Conventional Metal-Oxide-Semiconductor Transistor by Double Barriers Formed at the Channel Edges", Jpn. J. Appl. Phys. Vol. 39 (2000) pp. 3850–3853.
    [3]nanoHUB.org [online]. Available: http://nanohub.org/tools/nanomos/

    下載圖示 校內:2020-07-01公開
    校外:2020-07-01公開
    QR CODE