| 研究生: |
陳柄州 Chen, Ping-Chou |
|---|---|
| 論文名稱: |
具各種管尺寸之橢圓鰭管式熱交換器的熱傳特性研究 Study on Heat Transfer Characteristics of Elliptical Fin and Tube Heat Exchanger with Various Tube Size |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 橢圓鰭片 、橢圓管 、逆運算法 、數值模擬 、平均熱傳係數 |
| 外文關鍵詞: | inverse method, elliptical fin heat transfer, elliptical fin heat exchanger, average heat transfer coefficient |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗搭配逆運算法與Icepak探討橢圓板鰭管式熱交換器熱傳特性的研究,並探討橢圓鰭片間距、正向風速與兩種橢圓管尺寸對所得結果之影響。由於鰭片各點實際上的熱傳系數並不均勻,為了求得鰭片的平均熱傳系數,首先將鰭片劃分成數個小區域,並假設每個小區域內的熱傳係數為定值,接著搭配有限差分法及最小平方法來藉由實驗所得鰭片特定位置的溫度,以逆算法求得平均熱傳系數。本文也利用Icepak軟體求得實驗條件下的鰭片表面溫度與熱傳系數。結果顯示,增加鰭片間距可以使熱傳係數上升,並且會趨近於定值。提升流體風速可以使鰭片熱傳係數大幅提升,效果比增加鰭片間距還要好,但缺點是需要持續的外力來維持風速。當鰭片外緣相同時,中心的橢圓管徑越大,鰭片熱傳係數越大,但是風速越快時不同管徑的熱傳係數差距反而越小。另外,本文也利用模擬軟體分析比較不同情況下的鰭片周圍流場,並探討不同流動模式與網格切割對模擬結果之影響。
This study applies inverse method and Icepak to determine the heat transfer and fluid flow characteristics of elliptical fin and tube exchanger with various fin spacing, flow velocity and various tube size. Since the distribution of the heat transfer coefficient on the fin is not uniform, the plate-fin is divided into several subregions and the heat transfer coefficient in each subregion is assumed to be unknown constant.Then using inverse method with measured temperature data to predict and analyze the average heat transfer coefficient on each subregion and then the whole region. The inverse method along with the finite difference method, least squares fitting method and experimental temperature data are applied to determine the heat transfer coefficient. Icepak is applied to get temperature, heat transfer and coefficient.
The results indicate that the average heat transfer coefficient increase with increasing fin spacing and flow velocity but will be close to a value when the fin spacing is infinite long. The results also show that the average heat transfer coefficient increases when tube size is large but the difference between two different tube size will decrease when flow velocity increases. In order to verify the reliability of the inverse method with predicted results of this paper, the present study also compares the empirical corelations of other relevant literature with CFD simulation packages.
[1] A.D. Kraus, A. Aziz, J. Welty, “Extended surface heat transfer,” John Wiley and Sons, Inc., 2001.
[2] J.Y. Jang, H.T. Chen, H. Ay, “The development of high efficiency air-cooled stream condenser for the power plant (2/2),” Report of National Science Council, Taiwan, NSC 92-2622-E-006-146, 2005.
[3] C.N. Lin, J.Y. Jang, “A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins,” International Journal of Heat and Mass Transfer, vol. 45, pp. 3839-3847, 2002.
[4] L.A.O. Rocha, F.E.M. Saboya, J.V.C. Vargas, “A comparative study of elliptical and circular sections in one- and two-row tubes and plate fin heat exchangers,” International Journal of Heat and Fluid Flow, vol. 18, pp. 247-252, 1997.
[5] S.M. Saboya, F.E.M. Saboya, “Experiments on elliptic sections in oneand two-row arrangements of plate fin and tube heat exchangers,” Experimental Thermal and Fluid Science, vol. 24, pp. 67-75, 2001.
[6] N. Nagarani, K. Mayilsamy, A. murugesan, “Fin Effectiveness Optimization of Elliptical Annular Fins by Genetic Algorithm”, Procedia Engineering, vol. 38, pp. 2939-2948, 2012.
[7] H. Nemati, S. Samivand, “Performance optimization of annular elliptical fin based on thermo-geometric parameters”, Alexandria Engineering Journal, vol. 54, pp. 1037-1042, 2015.
[8] R.S. Matos, T.A. Laursen, J.V.C. Vargas, A. Bejan, “Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection”, International Journal of Thermal Sciences, vol. 43, pp. 477-487, 2004.
[9] B. Kundu, P.K. Das, “Performance analysis and optimization of elliptic fins circumscribing a circular tube”, International Journal of Heat and Mass Transfer, vol. 50, pp. 173-180, 2007.
[10] L. Zhang, X.Z. Du, L.J. Yang, L.L. Feng, Y.P. Yang, “The flow and heat transfer characteristics of numerical investigation of rectangular-fin elliptic-tube with interrupted holes,” Journal of Engineering Thermophysics, vol. 27, pp. 990-992, 2006.
[11] M.N. Özisik, “Heat Conduction,” 2nd ed., Wiley, New York, Chapter 14, 1993.
[12] C.R. Su, C.K. Chen, “Geometry estimation of the furnace inner wall by an inverse approach,” International Journal of Heat and Mass Transfer, vol. 50, pp. 3767-3773, 2007.
[13] 林毅凡,利用實驗數據預測橢圓鰭管式熱交換器之鰭片上的熱傳特性,國立成功大學機械工程學系,碩士論文,2008。
[14] V.S. Arpaci, “Introduction to heat transfer, Prentice Hall”, New Jersey, pp. 580,1999.
[15] A. Bejan, “Heat transfer, John Wiley & Sons”, Inc., New York, pp. 53-62, 1993.
[16] Q. Chen, W. Xu, “A zero-equation turbulence model for indoor airflow simulation”, energy & buildings, vol. 28, pp. 137-144, 1998.
[17] B.E. Launder, D. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.
[18] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, “Development of turbulence models for shear flows by a double expansion technique”, Physics of Fluids A, vol. 4, pp 1510-1520, 1992.
[19] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, “A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation”, Computers Fluids, vol. 24(3), pp. 227-238, 1995.
[20] R.L. Webb, “Principle of Enhanced Heat Transfer”, Wiley, New York, pp.125-153, 1994.
[21] Icepak User’s Guide, ANSYS, Inc.15.0, 2013.
校內:立即公開