簡易檢索 / 詳目顯示

研究生: 陳本源
Chen, Pen-Yuan
論文名稱: pH值與鎂離子濃度對胰蛋白酶活性及結構之影響
Effects of pH Value and Mg2+ Concentration on Bioactivity and Structure of Trypsin
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 88
中文關鍵詞: 結構活性胰蛋白?鎂離子濃度pH 值
外文關鍵詞: Trypsin, Structure, Bioactivity, Mg2+, pH Value
相關次數: 點閱:103下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鎂離子含量的多寡以及pH值的不同對胰蛋白酶的催化活性和結構有程度上的影響;在催化活性上當鎂離子濃度在0.05 M時,其初始速率和無Mg2+相比明顯增加約有40%;而當鎂離子濃度在1.5 M的情況下,相較於無Mg2+水解初始速率則變慢約14%。在結構上的影響,鎂離子的存在會使得Far-UV CD光譜圖有紅位移的現象,顯示出二級結構成份的含量有變化。結構的細微變化顯示出胰蛋白酶Trp螢光,在加入鎂離子後已有所改變,原因是鎂離子的加入(2.0 M)改變了胰蛋白酶的構形使得內部疏水性的Trp被暴露,因此所偵測到的Trp螢光變強約50%,但最大放射波長並沒有位移產生,這表示在Trp殘基的環境上沒有明顯地改變。當鎂離子濃度增加時(0.05 M),其ANS特性螢光有增強的趨勢,這顯示出隨著鎂離子濃度的增加,胰蛋白酶表面的疏水性區域也隨之增加;若鎂離子的濃度高於1 M時(1.5 M、2.0 M),不但ANS螢光強度分別增強為無Mg2+的1.5、1.7倍,而且其最大放射波長有很明顯往短波長位移,象徵著ANS所結合的區域轉變成更具疏水性。MIANS光譜的測量顯示出在鎂離子濃度高時(2.0 M)比無Mg2+,MIANS螢光強度下降56%,代表在高含量(2.0M)鎂離子狀態下,MIANS和半胱胺酸(Cysteine)殘基的SH-group鍵結數量變少,而導致螢光強度下降。

      In this study, we observed that the existence of Mg2+ had substantial effects on the catalytic hydrolysis of trypsin toward N-benzoyl-L-arginine ethyl ester (BAEE), however, the variations of pH ( pH 7, 8, and 9) value showed little effect on the activity. In the presence of 0.05 M Mg2+, the hydrolytic initial rate increased 40%, while the concentration of Mg2+ was 1.5 M, the initial rate decreased 14%. In order to investigate the structural changes of trypsin in the presence of Mg2+ and the variations of pH values, CD and Fluorescence spectra were measured. Far-UV CD spectra showed that with the presence of Mg2+ the percentage of 2o structural component of α-helix increased with the increasing of Mg2+ concentration. And the variation of pH showed no effect on the secondary components. Near-UV CD spectra indicated the tertiary structure of trypsin had little changes, suggesting the binding of Mg2+ might result in minor local alteration, which made little change on the overall structure. Trptophan emission spectra showed there had 50% increase in intensity with the presence of 2 M Mg2+ and the maximum emission wavelength did not shift, indicating no obvious environmental change around the tryptophan resideues. ANS fluorescence spectra showed when the concentration of Mg2+ was 1.5 M and 2.0 M, the intensity increased up to 1.5 and 1.7 fold, respectively, compared with that without the presence of Mg2+, indicating the hydrophobic region increased upon the addition of Mg2+. MIANS fluorescence measurements showed that there were 56% loss in the intensity with the presence of 2 M Mg2+, suggesting that the overall structure change had caused cysteine residues embedded and simultaneously more tryptophan and aromatic side chain containing amino acid residues exposed. This study has displayed that the hydrolytic activity of trypsin is dependent on the concentration of Mg2+.

    目錄 中文摘要………………………………………………………………………i 英文摘要……………………………………………………………………...ii 誌謝…………………………………………………………………………..iv 目錄…………………………………………………………………………..vi 表目錄………………………………………………………………………..ix 圖目錄………………………………………………………………………...x 第一章 序論 一、必須元素………………………………………………………………….1 (一)金屬毒性……………………………………………………………1 二、蛋白酶……………………………………………………………………5 (一)受質專一性口袋……………………………………………………6 (二)金屬蛋白酶…………………………………………………………8 (三)絲蛋白酶…………………………………………………………….8 (四)天冬胺酸蛋白酶……………………………………………………9 (五)胱胺酸蛋白酶……………………………………………………….9 三、胰蛋白酶………………………………………………………………..10 (一)Asp102在催化時的角色…………………………………………13 四、圓二色光譜……………………………………………………………..14 五、螢光光譜………………………………………………………………...17 六、酵素動力學……………………………………………………………..19 (一)M-M 公式的意義…………………………………………………20 七、研究動機………………………………………………………………..22 第二章 實驗……………………………………………………………….24 一、藥品……………………………………………………………………..24 二、儀器設備………………………………………………………………..25 三、實驗方法………………………………………………………………..26 (一)酵素活性測試……………………………………………………..26 (二)圓二色光譜的測量……………………………………………….27 (三)螢光的測量………………………………………………………..27 1.Trp和non-Trp螢光光譜…….…………………………………...27 2.ANS螢光光譜………………………………………………….28 3.MIANS螢光光譜……………………………………………….28 第三章 結果與討論……………………………………………………….37 一、酵素活性測量………………………………………………………….37 二、圓二色光譜…………………………………………………………….40 (一)遠紫外光圓二色光譜……………………………………………..40 (二)近紫外光圓二色光譜……………………………………………..42 三、螢光光譜………………………………………………………………..42 (一)Trp和non-Trp螢光光譜………………………………………….42 (二)ANS螢光光譜……………………………………………………...43 (三)MIANS螢光光譜…………………………………………………44 四、結論……………………………………………………………………...45 參考文獻…………………………………………………………………….86

    參考文獻
    1. From Stanley E. Manahan (Ed.)Toxicological Chemistry and Biochemistry third edition LEWIS Publishers, pp 211-212 ; pp 218-225, (2003)
    2. Dornyei, A.; Kilyen, M.; Kiss, T.; Gyurcsik, B.; Laczko, I.; Pecsvaradi, A.; Simon, L. M.; Kotorman M.: The Effect of Al(III) Speciation on The Activity of Trypsin, Journal of Inorganic Biochemistry, 97, pp 118-123, (2003)
    3. Babu, C. S.; Dudev, T. R.; Cowan, J. A.; Lim , C. : A Combined Experimental and Theoretical Study of Divalent Metal Ion Selectivity and Function in Proteins: Application to E. coli Ribonuclease H1, J. Am. Chem. Soc., 125, pp 9318-9328, (2003)
    4. Graf, L.; Jancso, A.; Szilagy, L.; Hegy, G.; Pinter, K.; Naray-Szabo, G.; Hepp, J.; Medzihradszky, K.; Rutter, W. J. , Proc. Natl. Acad. Sci. U.S.A. 85, pp 4961-4965, (1988)
    5. Rose, T.; Di Cera, E., J. Biol. Chem. 277, pp 19243-19246, (2002)
    6. Talal, G.; Jeffrey, D. M.; Robin, J. L.: The Role of The P2 Position of Bowman-Birk Protease Inhibition of Trypsin Studies on P2 Variation in Cyclic Peptides Encompassing the Reactive Site Loop, Biochimica et Biophysical Acta, 1431, pp 232-237, (1999)
    7. Hubert, F.G.; Antoine, J.P. : Increased Activity and Stability of Poly(ethylene glycol)-modified Trypsin ,Enzyme Microb.Technol. 14, pp 150-155, (1992)
    8. Geoffrey, L.Z.; William, W.P.; Dennis, E.V. : Principles of Biochemistry, New Wun Ching Developmental Publishing Co. Ltd., pp 6-17, pp 7-11, pp 7-16, (2002)
    9. David, L.N.; Michael, M.C. : Lehninger Principle of Biochemistry, Third Edition, Worth publishers,USA, pp 273-277, pp 626-627, (2000)
    10. Willism, E.B.; Finn W. : Alkyl Isocyanates as Activ-Site-Specific Reagents for Serine Properties, Biochemistry,12(5), pp 828-834, (1973)
    11. Toyokazu Ishida; Shigeki Kato; Theoretical Perspectives on the Reaction Mechanism of Serine Proteases: The Reaction Free Energy Profiles of the Acylation Process, J. Am. Chem. Soc., 125, pp 12035-12048 , (2003)
    12. Craik, C. S.; Roczniak, S.; Largman, C.; Rutter, W. J., Science, 237, pp 909-913, (1987)
    13. Sprang, S.; Standing, T.; Fletterick, R. J.; Stroud, R. M.; Finer-Moore, J.; Xuong, N.-H.; Hamlin, R.; Rutter, W. J.; Craik, C. S., Science, 237, pp 905-909, (1987)
    14. (a) Frey, P. A.; Whitt, S. A.; Tobin, J. B. Science, 264, pp 1927-1930, (1994) (b) Cleland, W. W.; Frey, P. A.; Gerlt, J. A., J. Biol. Chem., 273, pp 25529-25532, (1998)
    15. Toyokazu Ishida; Shigeki Kato: Role of Asp102 in the Catalytic Relay System of Serine Proteases: A Theoretical Study, J. Am. Chem. Soc., 126, pp 7111-7118, (2004)
    16. Koji Nakanishi; Berova, N.; Woody, R. W. Edited: Circular Dichroism Principles and Applications, VCH Publishers, Inc., p 473, (1994)
    17. Hirst, J. D.; Colella, K.; Andrew, T. B.: Gilbert Electronic Circular Dichroism of Proteins from First-Principles Calculations, J. Phys. Chem. B, 107, pp 11813-11819, (2003)
    18. Hennessey, J. P.; Jr.; Johnson, W. C.: Jr. Information Content in the Circular Dichroism of Proteins, Biochemistry, 20, pp 1085-1094, (1981)
    19. 陳陵援 吳慧眼 原著,儀器分析 ,三民書局,1982
    20. Nooshin Alizadeh-Pasdar; Eunice, C. Y.; Li-Chan: Comparison of Protein Surface Hydrophobicity Measured at Various pH Values Using Three Different Fluorescent Probes, J. Agric. Food Chem., 48, pp 328-334, (2000)
    21. Green, M. M.; Gladner, J. A.; Cunningham, L. W.; Neurath, H.: The Effects of Divalent Cations on The Enzymatic Activities of Trypsin and of α-Chymotrypsin, J. Am. Chem. Soc., 74(8), pp 2122-2123, (1952)
    22. Kotorman, M.; Laczko, I.; Szabo, A.; Simon, L. M.: Effect of Ca2+ on Catalytic Activity and Conformation of Trypsin and α–Chymotrypsin in Aqueous Ethanol, Biochemical and Biophysical Communications, 304, pp 18-21, (2003)
    23. Tello-Solis, S. R.; Valle-Guadarrama, M. E.; Hernandez-Arana, A. : Purification and Circular Dichroism Studies of Multiple Forms of Actinidin From Actinidia Chinensis (kiwifruit), Plant Science ,106, pp 227-232, (1995)
    24. Ou, W. B.; Wang, R. S.; Lu, J.; Zhou, H. M. : Effects of Aspartate on Rabbit Muscle Creatine Kinase and The Salt Induced Molten Globule State, The International Journal of Biochemistry & Cell Biology 34, pp 970-982, (2002)
    25. Unakar, N. J.; Tsui, J. Y.; Harding, Jr., C. V.: Scanning Electron Microscopy of Lens. Development and Reversal of Galactose Cataracts, Ophthalmic Res ,13, pp 20-35, (1981)
    26. Kinoshita, J. H.: Cataract in galactosemia: The Jonas S. Fridenwald Memorial Lecture, Invest Ophthalmol Vis Sci 4, pp 786-789, (1965)
    27. Worsham, L. M. S.; Earls, L.; Jolly, C.; Langston, K. G.; Trent, M. S.; Ernst-Fonberg, M. L. : Amino Acid Residues of Escherichia coli Acyl Carrier Protein Involved in Heterologous Protein Interactions, Biochemistry 42, pp 167-176, (2003)
    28. 呂鋒仁 林仁混 著,基礎酵素學,聯經,台北市,pp 109,pp 157,(1991)
    29. Spreti, N.; Alfani, F.; Cantarella, M.; D’Amico, F.; Germani, R.; Savelli, G.:α-Chymotrypsin Superactivity in Aqueous Solution of Cationic Surfactants, Journal of Molecular Catalysis B: Enzymatic , 6, pp 99-110, (1999)
    30. Tulla-Puche, J.; Getun, I. V.; Woodward, C.; Barany, G.: Native-like Conformations Are Sampled by Partially Folded and Disordered Variants of Bovine Pancreatic Tryosin Inhibitor, Biochemistry, 43, pp 1591-1598, (2004)
    31. Yang, Y.; Shao, Z.; Chen, X.; Zhou, P.: Optical Spectroscopy To Investigate the Structure of Regenerated Bombyx mori Silk Fibroin in Solution, Biomacromolecules, 5, pp 773-779, (2004)
    32. Gupte, S. S.; Lane, L. K.: Reaction of Purified (Na,K)-ATPase With The
    Fluorescent Sulfhydryl Probe 2-(4`-maleimidylanilino) naphthalene 6-sulfonic acid. Characterization and The Effects of Ligands, J.Bio.Chem. , 254, pp 10362-10369, (1979)

    下載圖示 校內:2005-08-13公開
    校外:2005-08-13公開
    QR CODE