簡易檢索 / 詳目顯示

研究生: 謝兆倫
Hsieh, Chao-Lun
論文名稱: 探討液滴在數百微米圓柱陣列表面滑落及撞擊表面的行為
Investigation of droplet sliding off and impinging on the micropillar array at hundreds of microns scale
指導教授: 莊怡哲
Juang, Yi-Je
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: PDMS圓柱表面濕潤轉變液滴撞擊卡西狀態
外文關鍵詞: polydimethylsiloxane (PDMS), micropillar array, droplet wetting transition, droplet impingement, Cassie state
相關次數: 點閱:90下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超疏水表面的研究一直以來是備受矚目廣泛研究的課題,在表面上製作微米甚至奈米尺寸等級的柱子,透過水珠靜態或是動態上的分析,可以了解水珠在不同情況的受力情形與最終狀態為何,讓我們可以歸納出一套製作超疏水表面的參考參數。本研究利用了CNC微鑽法雕刻出不同尺寸的模具,並透過翻模及PDMS蝕刻製備出百微米尺度的超疏水表面,以上製程透過簡單的設備與較低的成本能快速地做出表面。在靜態分析上,我們在不同尺寸的表面輕放水珠,觀察靜態接觸角與滑落角,找出水珠狀態的轉換位置,並與文獻做比較。發現由於我們的結構在尺度上比文獻中大了一到兩個層級,所以無法完全適用其中的理論,但我們歸納出一個簡單的幾何判別,找出百微米尺度的疏水表面狀態轉換位置。在動態分析上,我們將水滴從不同高度滴下,水珠會部分彈起或是穿越柱子浸濕表面,但在特定表面下水珠能完全彈起,分析水珠的受力情形,我們的表面應當不會讓水珠完全彈起,這與實驗結果不一致。而在液滴撞擊圓柱陣列表面時,我們發現,當水滴撞擊然後陷入圓柱,最後靜止於表面時,水滴會慢慢地往上移動。將水珠的移動距離標準化後,發現水珠移動的速率跟水珠與圓柱的接觸面積有關。

    In this study, we have investigated the static and dynamic wetting behavior of the surface with Polydimethylsiloxane (PDMS) micropillars array at hundreds of micros scale. The PDMS micropillars array was obtained by casting the cylindrical wells on the polymethyl methacrylate substrate, which were produced by computer numerical control (CNC) machine. For sessile drops, it is found that the droplet remained Cassie state at small W/D, where W is the pillar spacing and D is the pillar diameter. As W/D increased, the droplet gradually moved to the Cassie-Wenzel transition state. When W/D reached approximately to 2H/D where H is the height of micropillars, the contact angle of the sessile drop decreased drastically and the sessile drop was on the Wenzel state. In addition, we demonstrated the static results of larger droplets and showed that the volume of the drops did not affect the transition. Also, the sliding-off results can support the transition results. In the case of impinging experiments, water droplet can bounce on some micropillar arrays, which is against the pressure balance calculated. However, in some cases, we found that droplet could move upward after impinging and falling in the micropillar array. By normalizing the moving distance of the droplet, we concluded that the moving velocity of the droplet is related to the liquid-solid contact area.

    中文摘要 I Extended Abstact II 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 1 第二章 文獻回顧 2 2.1超疏水表面 2 2.2超疏水理論 4 2.2.1楊氏(Young)方程式 4 2.2.2溫佐(Wenzel)方程式[6, 7] 5 2.2.3卡西(Cassie)方程式[9, 10] 6 2.2.4其他 7 2-3卡西溫佐狀態轉換 8 2-4超疏水表面的製備 9 2-4-1 模板法(Template) 9 2-4-2 電紡織法(Electrospinning) 10 2-4-3溶膠-凝膠法(Sol-gel reaction) 12 2-4-4層層堆積法(Layer-by-layer) 13 2-5規則狀超疏水表面 16 2-5-1圓柱型、圓錐形超疏水表面 16 2-5-2 T字型超疏水表面 19 2-6製備Polydimethylsioxane(PDMS)超疏水表面 22 2-7超疏水表面的應用 26 第三章 實驗材料與方法 29 3-1實驗材料與藥品 29 3-2實驗儀器 30 3-3實驗步驟 35 第四章 實驗結果與討論 38 4-1製備具有圓柱結構超疏水表面 38 4-1-1 不同圓柱直徑D表面的接觸角探討 38 4-1-2 不同圓柱間距W表面的接觸角探討 40 4-1-3 PDMS圓柱表面接觸角與水珠狀態分析 42 4-1-4 PDMS表面滑落角分析 53 4-2 PDMS圓柱表面動態水滴撞擊分析 55 4-2-1 100 μm尺度下的PDMS圓柱 55 4-2-2 200 μm與300μm尺度下的PDMS圓柱 60 4-2-3水珠動態移動分析 66 第五章 結論 76 第六章 未來工作 77 第七章 參考文獻 78

    1. Barthlott, W. and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202(1), p. 1-8 (1997)
    2. Öner, D. and T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability. Langmuir, 16(20), p. 7777-7782 (2000)
    3. McHale, G., N. Shirtcliffe, and M. Newton, Contact-angle hysteresis on super-hydrophobic surfaces. Langmuir, 20(23), p. 10146-10149 (2004)
    4. Young, T., An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, p. 65-87 (1805)
    5. Overton, J.K., et al., High precision self-alignment using liquid surface tension for additively manufactured micro components. Precision Engineering, 40, p. 230-240 (2015)
    6. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), p. 988-994 (1936)
    7. Wenzel, R.N., Surface Roughness and Contact Angle. The Journal of Physical Chemistry, 53(9), p. 1466-1467 (1949)
    8. Nakajima, A., K. Hashimoto, and T. Watanabe, Recent studies on super-hydrophobic films. Monatshefte für Chemie/Chemical Monthly, 132(1), p. 31-41 (2001)
    9. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 40, p. 546-551 (1944)
    10. Herminghaus, S., Roughness-induced non-wetting. EPL (Europhysics Letters), 52(2), p. 165 (2000)
    11. Wang, S. and L. Jiang, Definition of Superhydrophobic States. Advanced Materials, 19(21), p. 3423-3424 (2007)
    12. He, B., N.A. Patankar, and J. Lee, Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir, 19(12), p. 4999-5003 (2003)
    13. Yoshimitsu, Z., et al., Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir, 18(15), p. 5818-5822 (2002)
    14. Jung, Y.C. and B. Bhushan, Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Materialia, 57(12), p. 1057-1060 (2007)
    15. Patankar, N.A., Transition between superhydrophobic states on rough surfaces. Langmuir, 20(17), p. 7097-7102 (2004)
    16. Reyssat, M., J. Yeomans, and D. Quéré, Impalement of fakir drops. EPL (Europhysics Letters), 81(2), p. 26006 (2007)
    17. Bhushan, B. and Y.C. Jung, Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy, 107(10), p. 1033-1041 (2007)
    18. Smyth, K., et al. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis. in Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on. 2010. IEEE.
    19. Ma, M. and R.M. Hill, Superhydrophobic surfaces. Current opinion in colloid & interface science, 11(4), p. 193-202 (2006)
    20. Qu, M., et al., Fabrication of superhydrophobic surfaces by a Pt nanowire array on Ti/Si substrates. Nanotechnology, 19(5), p. 055707 (2008)
    21. Cheng, Z., J. Gao, and L. Jiang, Tip geometry controls adhesive states of superhydrophobic surfaces. Langmuir, 26(11), p. 8233-8238 (2010)
    22. Greiner, A. and J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), p. 5670-5703 (2007)
    23. Lim, J.-M., et al., Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir, 23(15), p. 7981-7989 (2007)
    24. Zhu, Y., et al., Stable, superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Advanced Functional Materials, 16(4), p. 568-574 (2006)
    25. Sarkar, M.K., et al., Design of an outstanding super-hydrophobic surface by electro-spinning. Applied Surface Science, 257(15), p. 7003-7009 (2011)
    26. Yang, S., et al., Facile transformation of a native polystyrene (PS) film into a stable superhydrophobic surface via sol–gel process. Chemistry of Materials, 20(4), p. 1233-1235 (2008)
    27. Fan, Y., et al., Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties. Applied Surface Science, 258(17), p. 6531-6536 (2012)
    28. Tsai, H.-J. and Y.-L. Lee, Facile method to fabricate raspberry-like particulate films for superhydrophobic surfaces. Langmuir, 23(25), p. 12687-12692 (2007)
    29. Kim, Y.H., et al., Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films. ACS nano, 6(2), p. 1082-1093 (2012)
    30. Li, Y., L. Li, and J. Sun, Bioinspired Self‐Healing Superhydrophobic Coatings. Angewandte Chemie, 122(35), p. 6265-6269 (2010)
    31. Krupenkin, T., et al., Electrically tunable superhydrophobic nanostructured surfaces. Bell Labs Technical Journal, 10(3), p. 161-170 (2005)
    32. Marquez-Velasco, J., et al., Stable superhydrophobic surfaces induced by dual-scale topography on SU-8. Microelectronic Engineering, 87(5), p. 782-785 (2010)
    33. Kwon, Y., et al., Design of surface hierarchy for extreme hydrophobicity. Langmuir, 25(11), p. 6129-6136 (2009)
    34. D’urso, B., J. Simpson, and M. Kalyanaraman, Emergence of superhydrophobic behavior on vertically aligned nanocone arrays. Applied physics letters, 90(4), p. 044102 (2007)
    35. D'Urso, B., J.T. Simpson, and M. Kalyanaraman, Nanocone array glass. Journal of Micromechanics and Microengineering, 17(4), p. 717 (2007)
    36. Tuteja, A., et al., Designing superoleophobic surfaces. Science, 318(5856), p. 1618-1622 (2007)
    37. Ahuja, A., et al., Nanonails: A simple geometrical approach to electrically tunable superlyophobic surfaces. Langmuir, 24(1), p. 9-14 (2008)
    38. Kim, S., E. Cheung, and M. Sitti, Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. Langmuir, 25(13), p. 7196-7199 (2009)
    39. Grigoryev, A., et al., Superomniphobic magnetic microtextures with remote wetting control. Journal of the American Chemical Society, 134(31), p. 12916-12919 (2012)
    40. Liu, T. and C.-J. Kim, Turning a surface superrepellent even to completely wetting liquids. Science, 346(6213) (2014)
    41. Cortese, B., et al., Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces. Langmuir, 24(6), p. 2712-2718 (2008)
    42. Lee, S.E., et al., Flexible Superhydrophobic Polymeric Surfaces with Micro‐/Nanohybrid Structures Using Black Silicon. Macromolecular Materials and Engineering, 298(3), p. 311-317 (2013)
    43. Migliaccio, C.P. and N. Lazarus, Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting. Applied Surface Science, 353, p. 269-274 (2015)
    44. Im, M., et al., A robust superhydrophobic and superoleophobic surface with inverse-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter, 6(7), p. 1401-1404 (2010)
    45. Feng, L., et al., Petal effect: a superhydrophobic state with high adhesive force. Langmuir, 24(8), p. 4114-4119 (2008)
    46. Stanton, M.M., et al., Super-hydrophobic, highly adhesive, polydimethylsiloxane (PDMS) surfaces. Journal of colloid and interface science, 367(1), p. 502-508 (2012)
    47. Yong, J., et al., Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays. Langmuir, 29(10), p. 3274-3279 (2013)
    48. Zhang, J. and S. Seeger, Superoleophobic coatings with ultralow sliding angles based on silicone nanofilaments. Angewandte Chemie International Edition, 50(29), p. 6652-6656 (2011)
    49. Kang, S.M., et al., Robust superomniphobic surfaces with mushroom-like micropillar arrays. Soft Matter, 8(33), p. 8563-8568 (2012)
    50. Xue, C.-H., X. Bai, and S.-T. Jia, Robust, self-healing superhydrophobic fabrics prepared by one-step coating of PDMS and octadecylamine. Scientific reports, 6 (2016)
    51. Balakrisnan, B., S. Patil, and E. Smela, Patterning PDMS using a combination of wet and dry etching. Journal of Micromechanics and Microengineering, 19(4), p. 047002 (2009)
    52. Deng, Y.-L. and Y.-J. Juang, Polydimethyl siloxane wet etching for three dimensional fabrication of microneedle array and high-aspect-ratio micropillars. Biomicrofluidics, 8(2), p. 026502 (2014)
    53. Kusumaatmaja, H., et al., The collapse transition on superhydrophobic surfaces. EPL (Europhysics Letters), 81(3), p. 36003 (2008)
    54. Deng, T., et al., Nonwetting of impinging droplets on textured surfaces. Applied Physics Letters, 94(13), p. 133109 (2009)
    55. Kwon, H.-M., et al., Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces. Physical review letters, 106(3), p. 036102 (2011)

    下載圖示 校內:2020-01-01公開
    校外:2020-01-01公開
    QR CODE