簡易檢索 / 詳目顯示

研究生: 柯旭恩
Ke, Shiu-En
論文名稱: 一些緊緻黎曼流形上拉普拉斯算子的特徵值估計
Some Estimations of The Eigenvalues of Laplacian On Compact Riemannian Manifolds
指導教授: 劉珈銘
Liou, Jia-Ming
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 26
中文關鍵詞: 黎曼流形拉普拉斯算子特徵值
外文關鍵詞: Riemannian manifold, Laplacian, eigenvalue spectrum
相關次數: 點閱:103下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文主要探討在一般的緊緻黎曼流形上,一些有關拉普拉斯算子的特徵值問題。一開始先介紹了為何拉普拉斯算子能在黎曼流形上產生特徵值序列,並主要接著探到第一非零特徵值該如何估計,以及接下來的相鄰特徵值之間應該如何估計。

    In this paper, we recall some origins of the eigenvalue spectrum of Laplacian oncompact Riemannian manifolds by using some classical method of functional analysis,divisor theory, Sobolev’s theory and so on. We enter the issue about upper bounds ofthe first nonzero eigenvalue and an estimation of gaps of two consecutive eigenvalues.

    1 Introduction1 1 2 Preliminary 2 2.1 Hilbert vector spaces 2 2.2 Laplacian 6 2.3 Sobolev space9 2.4 Computing Eigenvalues10 2.5 Riemann surface and Complex Analysis10 3 The First Eigenvalue 14 3.1 FromS2to General Riemann Surfaces 15 3.2 An Computation on Riemann Sphere 16 3.3 Adjusting for being testing functions 19 4 The Gaps of Consecutive Eigenvalues 20

    [1] Paul C. Yang, Shing Tung YauEigenvalues of the Laplacian of Compact RiemannSurfaces and Minimal Submanifolds,Annali della Scuola Normale Superiore diPisa, Classe di Scienze 4eserie, tome 7,no1 (1980), p.55-63
    [2] R. Schoen S.-T. YauLectures on Differrential Geometry
    [3] Wilhelm SchlagA concise course in complex analysis and Riemann surfaces
    [4] Tsogtgerel GantumurSpectral Properties of the Laplacian on Bounded
    [5] Yaiza CanzaniNotes for Analysis on Manifolds via the Laplacian
    [6] Markus HarjuSpectral theory of elliptic differential operators Lecture Notes 1 stEdition Second printing
    [7] OMID AMINIAPPLICATIONS OF THE LI-YAU INEQUALITY IN ARITH-METIC GEOMETRY

    下載圖示 校內:2018-06-22公開
    校外:2018-06-22公開
    QR CODE