簡易檢索 / 詳目顯示

研究生: 李洋銳
Li, Yang-Rui
論文名稱: 非線性機械系統之強健二階順滑模態控制律設計與實現
Robust Second-Order Sliding Mode Control Law Design and Realization for Nonlinear Mechanical Systems
指導教授: 彭兆仲
Peng, Chao-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 97
中文關鍵詞: 二階順滑模態控制超扭演算法馬達定位控制單軸反應輪模組定位控制冗餘反應輪構型之太空載具姿態控制.
外文關鍵詞: Second-Order Sliding Mode Control, Super-Twisting Algorithm, Positioning Control of Servo Motor, Single-Axis Reaction Wheel Positioning Control, Attitude Control of Spacecraft Based on Redundant Reaction Wheel.
相關次數: 點閱:235下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文旨在應用強健之二階順滑模態理論,於非線性機械系統的追蹤控制律設計。首先,從傳統順滑模態控制理論出發,探討了順滑模態理論對於匹配式擾動 (matched perturbation) 之強健性,與其在有限時間 (finite time) 內達到之降階 (reduced-order) 特性;但其代價乃是由切換控制 (switching control) 所誘發之高頻控制訊號切換,意即顫振 (chattering) 現象。為了得到一連續的控制訊號,又不失去其對於匹配式擾動的強健性,引入了於二階順滑模態控制理論當中的超扭演算法 (super-twisting sliding mode algorithm),相較於其他二階順滑模態控制演算法,其僅需要滑動變數 (sliding variable) 的回授資訊,而不需要其微分資訊,這使其常被應用於相對階數 (relative degree) 為1的系統。於本研究,講述了數個數值模擬範例,來說明超扭演算法的強健性,有限時間穩定性,以及在頻率域中的穩定性詮釋。就實際工程問題的觀點而言,首先考慮了常見的伺服馬達定位控制問題,引入了具有非對稱 Coulomb 摩擦的非線性馬達模型,接著進行系統參數的鑑別,最後根據超扭演算法設計定位控制器。多個比較的數值模擬與實驗驗證,亦顯示了超扭控制器對於擾動的強健特性以及快速的收斂性,並且其實現簡單,對於存在複雜擾動的環境下,超扭控制器可以驅動系統追蹤到期望的參考軌跡。作為冗餘反應輪姿態控制的前期研究,本研究首先討論了由單軸反應輪驅動之定位模組,模擬與實驗結果亦顯示了超扭控制器的有效性。對於冗餘反應輪姿態控制之課題,為了實現全方向的姿態控制,引入了四元數 (quaternion) 作為姿態的描述方法,並據此進行控制 (quaternion-based control)。對於其冗餘反應輪構型下之致動器分析,基於最佳化理論,提出了最小能量花費之力量分布矩陣 (force distribution matrix)。值得一提的是,基於四元數表示法的非線性降階動態,本論文提出了解析解來說明其穩定性與收斂特性。針對於太空任務當中可能遭遇到的任務需求,提出了切線-法線-雙法線 (tangent-normal-binormal) 座標系的姿態命令產生方式。模擬的結果顯示了超扭控制器的有效性及其優異特性。

    The purpose of this study is to apply the robust second-order sliding mode theory in the trajectory tracking control law design for nonlinear mechanical systems. The first of the thesis begins from the conventional sliding mode control (CSMC) theory, the robustness to the matched perturbations, finite-time stability, and reduced-order property are observed. However, the price of robust properties is that the designed switching control will induce the high-frequency switching of the control signal, which is the chattering phenomenon. One of the second-order sliding mode control approaches, namely the super-twisting sliding mode algorithm (STSMA), is introduced to obtain a continuous control signal and preserve the robust property to the matched perturbations. Comparing the STSMA to the other second-order sliding mode control algorithms only needs to feedback the sliding variable but its derivatives one does not. This characteristic so that the STSMA is often applied in the systems with the relative degree equal to one. Multiple numerical examples are provided about the super-twisting algorithm to illustrate its robustness, finite-time property, and stability interpretations in the frequency-domain. From the realistic engineering problem point of view, firstly consider the well-known positioning control of the servo motor. The nonlinear, unsymmetrical Coulomb friction model is introduced. The corresponding system parameter identification techniques are also conducted. Based on the identified dynamic model, the robust super-twisting positioning controller is designed. Comparative numerical simulations and experiment validations are carried on. The results reveal the robustness and the high-precise tracking performance of the super-twisting controller concerning the traditional linear controller. Remarkably, the implementation of a super-twisting controller is not difficult. For the environment with the unknown complex disturbance, the super-twisting controller still can derive the linear/nonlinear system to the desired trajectory. As the preliminary research of the redundant reaction wheel driven attitude control system, the single-axis reaction wheel driven positioning module is firstly discussed. The simulations/experiments results show that the effectiveness of the proposed control scheme. To realize the fully orientational attitude control of the spacecraft, the quaternion-based attitude representation is introduced, and the associating quaternion-based control is conducted. Based on the optimal control theory, the optimal force distribution matrix (FDM) to minimize the control energy for the redundant reaction wheels configuration is presented. It should be noted that the stability and the convergent behavior of the nonlinear reduced-order dynamics are addressed utilizing an analytic solution. From the space mission scenario point of view, the tangent-normal-binormal (TNB) frame attitude command follow strategy is proposed. The simulation results illustrate that the superior tracking performance and effectiveness of the super-twisting controller.

    摘要I Abstract II Acknowledgments IV Contents V List of Tables VIII List of Figures IX 1 Introduction 1 1.1 Motivation and Literature Review 1 1.2 Brief Results and Organization 2 1.3 Contributions 3 2 Sliding Mode Control 5 2.1 Conventional Sliding Mode Control 5 2.2 Second-Order Sliding Mode Control 11 2.2.1 Super-Twisting Sliding Mode Algorithm 11 2.2.2 Application Example: Second-Order Perturbed System 21 3 Positioning Control of Servo Motor 29 3.1 System Description for Servo Motor with Unsymmetrical Coulomb Friction 29 3.2 System Parameter Identification 30 3.2.1 Linear Least Square 30 3.2.2 Backward Difference Discretization (BDD) 31 3.2.3 Central Difference Discretization (CDD) 32 3.2.4 Bilinear Difference Discretization (BTD) 33 3.3 Positioning Controller Design 34 3.3.1 State-space Representation and Error Dynamics 34 3.3.2 Super-Twisting Sliding Mode Positioning Controller 35 3.4 Command Pre-filter 37 3.5 Approximated Differentiator 38 3.6 Numerical Simulation 38 3.6.1 Simulator Background 38 3.6.2 Servo Motor Parameter Identification 38 3.6.3 Servo Motor Positioning Control 40 3.7 Experiment Validation 42 3.7.1 Experimental Environment and Instruments 42 3.7.2 Servo Motor Parameter Identification 42 3.7.3 Servo Motor Positioning Control 44 4 Single-Axis Reaction Wheel Positioning Control 49 4.1 Euler-based Attitude Representation 49 4.2 Single Reaction Wheel Based Attitude Dynamics 52 4.2.1 Single-Axis Attitude Dynamics 53 4.3 System Identification of Overall System 54 4.4 Super-Twisting Positioning Controller Design 56 4.5 Numerical Simulation 59 4.5.1 System Parameter Identification 59 4.5.2 Positioning Control 60 4.6 Experiment Validation 62 4.6.1 Experiment Instrument 62 4.6.2 System Parameter Identification 62 4.6.3 Positioning Control 63 5 Attitude Control of Spacecraft based on Redundant Reaction Wheels 65 5.1 Reaction Wheels Driven based Spacecraft Dynamics Modeling 65 5.1.1 Geometry Configuration Analysis 66 5.1.2 Attitude Dynamics 68 5.1.3 Actuator Analysis 71 5.2 Super-Twisting Sliding Mode Controller Design 73 5.3 Spacecraft Reference Command Generation 77 5.3.1 Reference Quaternion Generation From TNB-Frame 77 5.3.2 Reference Angular Velocity Generation 78 5.4 Numerical Simulation 78 6 Conclusion 83 7 Future Work 85 A Proof of L2-gain Theorem 87 B Experiment Videos 91 References 93

    [1] Z. Feng and J. Fei, “Design and analysis of adaptive super-twisting sliding mode control for a microgyroscope,” PloS one, vol. 13, no. 1, p. e0189457, 2018.
    [2] Z. Wang, Q. Li, and S. Li, “Adaptive integral-type terminal sliding mode fault tolerant control for spacecraft attitude tracking,” IEEE Access, vol. 7, pp. 35 195–35 207, 2019.
    [3] Y. Zhao, J. Wang, F. Yan, and Y. Shen, “Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays,” Information Sciences, vol. 473, pp. 227–238, 2019.
    [4] G. Sun, L. Wu, Z. Kuang, Z. Ma, and J. Liu, “Practical tracking control of linear motor via fractional-order sliding mode,” Automatica, vol. 94, pp. 221–235, 2018.
    [5] L. Wang and Z. Song, “Continuous fixed-time sliding mode attitude controller design for rigid-body spacecraft,” IEEE Access, vol. 8, pp. 105 399–105 410, 2020.
    [6] L. Luque-Vega, B. Castillo-Toledo, and A. G. Loukianov, “Robust block second order sliding mode control for a quadrotor,” Journal of the Franklin Institute, vol. 349, no. 2, pp. 719–739, 2012.
    [7] F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust backstepping sliding mode control and observer-based fault estimation for a quadrotor uav,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5044–5056, 2016.
    [8] D. Almakhles, “Robust backstepping sliding mode control for a quadrotor trajectory tracking application,” IEEE Access, 2019.
    [9] F. Bayat, “Model predictive sliding control for finite-time three-axis spacecraft attitude tracking,” IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 7986–7996, 2018.
    [10] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding mode control and observation. Springer, 2014.
    [11] Y. B. Shtessel, J. A. Moreno, F. Plestan, L. M. Fridman, and A. S. Poznyak, “Super-twisting adaptive sliding mode control: A Lyapunov design,” in 49th IEEE conference on decision and control (CDC). IEEE, 2010, pp. 5109–5113.
    [12] Y. Shtessel, F. Plestan, and M. Taleb, “Lyapunov design of adaptive super-twisting controller applied to a pneumatic actuator,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 3051–3056, 2011.
    [13] Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-gain super-twisting sliding mode controller: Methodology and application,” Automatica, vol. 48, no. 5, pp. 759–769, 2012.
    [14] V. I. Utkin and A. S. Poznyak, “Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method,” Automatica, vol. 49, no. 1, pp. 39–47, 2013.
    [15] K. Lu and Y. Xia, “Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm,” IET Control Theory & Applications, vol. 8, no. 15, pp. 1465–1477, 2014.
    [16] C.-C. Peng and C.-L. Chen, “Robust chaotic control of lorenz system by backstepping design,” Chaos, Solitons & Fractals, vol. 37, no. 2, pp. 598–608, 2008.
    [17] C.-L. Chen, C. C. Peng, and H.-T. Yau, “High-order sliding mode controller with backstepping design for aeroelastic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 4, pp. 1813–1823, 2012.
    [18] L.-H. Chen and C.-C. Peng, “Extended backstepping sliding controller design for chattering attenuation and its application for servo motor control,” Applied Sciences, vol. 7, no. 3, p. 220, 2017.
    [19] A. Levant, “Sliding order and sliding accuracy in sliding mode control,” International journal of control, vol. 58, no. 6, pp. 1247–1263, 1993.
    [20] J. Davila, L. Fridman, and A. Levant, “Second-order sliding-mode observer for mechanical systems,” IEEE transactions on automatic control, vol. 50, no. 11, pp. 1785–1789, 2005.
    [21] J. A. Moreno and M. Osorio, “A lyapunov approach to second-order sliding mode controllers and observers,” in 2008 47th IEEE conference on decision and control. IEEE, 2008, pp. 2856–2861.
    [22] A. Dávila, J. A. Moreno, and L. Fridman, “Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm,” in Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference. IEEE, 2009, pp. 8405–8410.
    [23] J. A. Moreno, “A linear framework for the robust stability analysis of a generalized super-twisting algorithm,” in 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2009, pp. 1–6.
    [24] J. A. Moreno and M. Osorio, “Strict lyapunov functions for the super-twisting algorithm,” IEEE transactions on automatic control, vol. 57, no. 4, pp. 1035–1040, 2012.
    [25] V. Utkin, “On convergence time and disturbance rejection of super-twisting control,” IEEE Transactions on Automatic Control, vol. 58, no. 8, 2013.
    [26] L. Derafa, A. Benallegue, and L. Fridman, “Super twisting control algorithm for the attitude tracking of a four rotors uav,” Journal of the Franklin Institute, vol. 349, no. 2, pp. 685–699, 2012.
    [27] H. L. N. N. Thanh and S. K. Hong, “Quadcopter robust adaptive second order sliding mode control based on pid sliding surface,” IEEE Access, vol. 6, pp. 66 850–66 860, 2018.
    [28] A. Chalanga, S. Kamal, L. M. Fridman, B. Bandyopadhyay, and J. A. Moreno, “Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches,” IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3677–3685, 2016.
    [29] M. Zhang, J. Huang, and F. Chen, “Super twisting control algorithm for velocity control of mobile wheeled inverted pendulum systems,” in 2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO). IEEE, 2018, pp. 3–8.
    [30] S. Nomura, S. Ikari, and S. Nakasuka, “Three-axis attitude maneuver of spacecraft by reaction wheels with rotation speed constraints,” IFAC-PapersOnLine, vol. 49, no. 17, pp. 130–134, 2016.
    [31] M. Navabi and M. Hosseini, “Spacecraft quaternion based attitude input-output feedback linearization control using reaction wheels,” in 2017 8th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2017, pp. 97–103.
    [32] H. S. Ousaloo, “Globally asymptotic three-axis attitude control for a two-wheeled small satellite,” Acta Astronautica, vol. 157, pp. 17–28, 2019.
    [33] M. Muehlebach and R. D'Andrea, “Nonlinear analysis and control of a reactionwheel-based 3-d inverted pendulum,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 235–246, 2016.
    [34] D. Gutiérrez-Oribio, Á. Mercado-Uribe, J. A. Moreno, and L. Fridman, “Reaction wheel pendulum control using fourth-order discontinuous integral algorithm,” International Journal of Robust and Nonlinear Control, 2020.
    [35] N. A. Chaturvedi, A. K. Sanyal, and N. H. McClamroch, “Rigid-body attitude control,”
    IEEE control systems magazine, vol. 31, no. 3, pp. 30–51, 2011.
    [36] S.-C. Lo and Y.-P. Chen, “Smooth sliding-mode control for spacecraft attitude tracking maneuvers,” Journal of Guidance, Control, and Dynamics, vol. 18, no. 6, pp. 1345–1349, 1995.
    [37] S. Wu, G. Radice, Y. Gao, and Z. Sun, “Quaternion-based finite time control for spacecraft attitude tracking,” Acta Astronautica, vol. 69, no. 1-2, pp. 48–58, 2011.
    [38] I. Kök, “Comparison and analysis of attitude control systems of a satellite using reaction wheel actuators,” 2012.
    [39] Z. Ismail and R. Varatharajoo, “A study of reaction wheel configurations for a 3-axis satellite attitude control,” Advances in Space Research, vol. 45, no. 6, pp. 750–759, 2010.
    [40] J. Liu and X. Wang, Advanced sliding mode control for mechanical systems. Springer, 2012.
    [41] E. Cruz-Zavala, J. A. Moreno, and L. M. Fridman, “Uniform robust exact differentiator,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2727–2733, 2011.
    [42] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. Siam, 1994, vol. 15.
    [43] 蘇宸儀, “具量測不確定性下之冷卻扇系統數學建模, 參數鑑別與控制器設計,” 成功大學航空太空工程學系學位論文, pp. 1–74, 2020.
    [44] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012.
    [45] H. D. Curtis, Orbital mechanics for engineering students. Butterworth-Heinemann, 2013.
    [46] A. Zhang, J. Ni, and H. R. Karimi, “Reaction wheel installation deviation compensation for overactuated spacecraft with finite-time attitude control,” Mathematical Problems in Engineering, 2013.
    [47] H. K. Khalil, “Nonlinear systems,” Upper Saddle River, 2002.

    下載圖示 校內:2024-01-15公開
    校外:2024-01-15公開
    QR CODE