| 研究生: |
戴明偉 Dai, Ming-Wei |
|---|---|
| 論文名稱: |
碳氫火焰輔助氨/空氣燃燒過程中的熵生成率和NOx排放機制之數值研究 Numerical Study of NOx Emission and Entropy Generation in Ammonia/Air Combustion with Assistance of Hydrocarbon/Air Flames. |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 氨氣 、碳氫燃料 、氮氧化物路徑 、熵生成率 |
| 外文關鍵詞: | Ammonia, Hydrocarbon fuels, NOx pathways, Entropy generation rate |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Zhang M, An Z, Wei X, Wang J, Huang Z, Tan H. Emission analysis of the CH4/NH3/air co-firing fuels in a model combustor. Fuel. 2021;291:120135.
[2] Xie M, Tu Y, Peng Q. Numerical study of NH3/CH4 MILD combustion with conjugate heat transfer model in a down-fired lab-scale furnace. Applications in Energy and Combustion Science. 2023;14:100144.
[3] Xu Q, Kobayashi T. Advanced materials for clean energy: CRC Press; 2015.
[4] Okanishi T, Okura K, Srifa A, Muroyama H, Matsui T, Kishimoto M, et al. Comparative Study of Ammonia‐fueled Solid Oxide Fuel Cell Systems. Fuel Cells. 2017;17:383-90.
[5] Gosnell J. Annual NH3 Fuel Conference. Argonne National Laboratory. 2005.
[6] Lemmon EW. Thermophysical properties of fluid systems. NIST chemistry WebBook. 2010.
[7] Cai T, Zhao D. Overview of autoignition and flame propagation properties for ammonia combustion. AIAA Journal. 2023;61:2754-78.
[8] Han X, Wang Z, Costa M, Sun Z, He Y, Cen K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combustion and Flame. 2019;206:214-26.
[9] Palys MJ, Daoutidis P. Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive techno-economic study. Computers & Chemical Engineering. 2020;136:106785.
[10] Ishaq H, Crawford C. Review and evaluation of sustainable ammonia production, storage and utilization. Energy Conversion and Management. 2024;300:117869.
[11] Giddey S, Badwal S, Munnings C, Dolan M. Ammonia as a renewable energy transportation media. ACS Sustainable Chemistry & Engineering. 2017;5:10231-9.
[12] Foster SL, Bakovic SIP, Duda RD, Maheshwari S, Milton RD, Minteer SD, et al. Catalysts for nitrogen reduction to ammonia. Nature Catalysis. 2018;1:490-500.
[13] Du H-L, Chatti M, Hodgetts RY, Cherepanov PV, Nguyen CK, Matuszek K, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency. Nature. 2022;609:722-7.
[14] Bicer Y, Dincer I, Zamfirescu C, Vezina G, Raso F. Comparative life cycle assessment of various ammonia production methods. Journal of Cleaner Production. 2016;135:1379-95.
[15] Dimitriou P, Javaid R. A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy. 2020;45:7098-118.
[16] Valera-Medina A, Xiao H, Owen-Jones M, David WI, Bowen P. Ammonia for power. Progress in Energy and combustion science. 2018;69:63-102.
[17] Zacharakis-Jutz GE. Performance characteristics of ammonia engines using direct injection strategies: Iowa State University; 2013.
[18] Chehade G, Dincer I. Progress in green ammonia production as potential carbon-free fuel. Fuel. 2021;299:120845.
[19] Wang B, Yang C, Wang H, Hu D, Wang Y. Effect of Diesel-Ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance. Fuel. 2023;331:125865.
[20] Hayakawa A, Arakawa Y, Mimoto R, Somarathne KKA, Kudo T, Kobayashi H. Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor. International Journal of Hydrogen Energy. 2017;42:14010-8.
[21] Cheng M, Wang H, Xiao H, Luo K, Fan J. Emission characteristics and heat release rate surrogates for ammonia premixed laminar flames. International Journal of Hydrogen Energy. 2021;46:13461-70.
[22] Li J, Huang H, Kobayashi N, He Z, Nagai Y. Study on using hydrogen and ammonia as fuels: Combustion characteristics and NOx formation. International journal of energy research. 2014;38:1214-23.
[23] Choi S, Lee S, Kwon OC. Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures. Energy. 2015;85:503-10.
[24] Oh S, Park C, Ahn M, Jang H, Kim S. Experimental approach for reducing nitrogen oxides emissions from ammonia–natural gas dual-fuel spark-ignition engine. Fuel. 2023;332:126065.
[25] da Rocha RC, Costa M, Bai X-S. Chemical kinetic modelling of ammonia/hydrogen/air ignition, premixed flame propagation and NO emission. Fuel. 2019;246:24-33.
[26] Valera-Medina A, Gutesa M, Xiao H, Pugh D, Giles A, Goktepe B, et al. Premixed ammonia/hydrogen swirl combustion under rich fuel conditions for gas turbines operation. International journal of hydrogen energy. 2019;44:8615-26.
[27] Sloane TM. Energy requirements for spherical ignitions in methane-air mixtures at different equivalence ratios. Combustion science and technology. 1990;73:351-65.
[28] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and flame. 2018;187:185-98.
[29] Li Y-H, Liang J-W, Lin H-J. Development of laminar burning velocity measurement system in premixed flames with hydrogen-content syngas or strong oxidizer conditions in a slot burner. Case Studies in Thermal Engineering. 2022;35:102162.
[30] Okafor EC, Somarathne KKA, Ratthanan R, Hayakawa A, Kudo T, Kurata O, et al. Control of NOx and other emissions in micro gas turbine combustors fuelled with mixtures of methane and ammonia. Combustion and flame. 2020;211:406-16.
[31] Khateeb AA, Guiberti TF, Wang G, Boyette WR, Younes M, Jamal A, et al. Stability limits and NO emissions of premixed swirl ammonia-air flames enriched with hydrogen or methane at elevated pressures. International Journal of Hydrogen Energy. 2021;46:11969-81.
[32] Mikulčić H, Baleta J, Wang X, Wang J, Qi F, Wang F. Numerical simulation of ammonia/methane/air combustion using reduced chemical kinetics models. International journal of hydrogen energy. 2021;46:23548-63.
[33] Goroshin S, Frost DL, Levine J, Yoshinaka A, Zhang F. Optical pyrometry of fireballs of metalized explosives. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials. 2006;31:169-81.
[34] Chen D, Li J, Li X, Deng L, He Z, Huang H, et al. Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner. Energy. 2023;263:125613.
[35] Nozari H, Karaca G, Tuncer O, Karabeyoglu A. Porous medium based burner for efficient and clean combustion of ammonia–hydrogen–air systems. International journal of hydrogen energy. 2017;42:14775-85.
[36] Vignat G, Akoush B, Toro ER, Boigné E, Ihme M. Combustion of lean ammonia-hydrogen fuel blends in a porous media burner. Proceedings of the Combustion Institute. 2023;39:4195-204.
[37] Somarathne KDKA, Hayakawa A, Kobayashi H. Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner. Journal of Fluid Science and Technology. 2016;11:JFST0026-JFST.
[38] Smooke M, McEnally C, Pfefferle L, Hall R, Colket M. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combustion and Flame. 1999;117:117-39.
[39] Montgomery MJ, Kwon H, Dreyer JA, Xuan Y, McEnally CS, Pfefferle LD. Effect of ammonia addition on suppressing soot formation in methane co-flow diffusion flames. Proceedings of the Combustion Institute. 2021;38:2497-505.
[40] Johnson MB, Sobiesiak A. Hysteresis of methane inverse diffusion flames with co-flowing air and combustion products. Proceedings of the Combustion Institute. 2011;33:1079-85.
[41] Li Y-H, Chen C-H, Ilbas M. Effect of diluent addition on combustion characteristics of methane/nitrous oxide inverse tri-coflow diffusion flames. Combustion science and technology. 2022;194:1973-93.
[42] Chou D, Tsai W-Y, Emami MD, Li Y-H. Entropy Generation and Exergy Assessment of Methane–Nitrous Oxide Diffusion Flames in a Triple-Port Burner. International Journal of Energy Research. 2023;2023.
[43] Li Y-H, Hsu C-H, Lin P-H, Chen C-H. Thermal effect and oxygen-enriched effect of N2O decomposition on soot formation in ethylene diffusion flames. Fuel. 2022;329:125430.
[44] Ma Y, Ma Y, Wang Q, Schweidler S, Botros M, Fu T, et al. High-entropy energy materials: challenges and new opportunities. Energy & Environmental Science. 2021;14:2883-905.
[45] Shahbeig H, Shafizadeh A, Rosen MA, Sels BF. Exergy sustainability analysis of biomass gasification: a critical review. Biofuel Research Journal. 2022;9:1592-607.
[46] Hirschfelder JO, Curtiss CF, Bird RB. The molecular theory of gases and liquids: John Wiley & Sons; 1964.
[47] Nishida K, Takagi T, Kinoshita S. Analysis of entropy generation and exergy loss during combustion. Proceedings of the Combustion Institute. 2002;29:869-74.
[48] Sun H, Zhang Z, Sun H, Yao B, Lou C. Numerical investigation of exergy loss of ammonia addition in hydrocarbon diffusion flames. Entropy. 2022;24:922.
[49] Zhao H, Zhao D, Becker S. Entropy production and enhanced thermal performance studies on counter-flow double-channel hydrogen/ammonia-fuelled micro-combustors with different shaped internal threads. International Journal of Hydrogen Energy. 2022;47:36306-22.
[50] Arpaci VS, Selamet A. Entropy production in flames. Combustion and flame. 1988;73:251-9.
[51] Salimath PS, Ertesvåg IS. Local entropy generation and entropy fluxes of a transient flame during head-on quenching towards solid and hydrogen-permeable porous walls. international journal of hydrogen energy. 2021;46:26616-30.
[52] Rong H, Zhao D, Becker S, Liu X. Entropy production and thermodynamics exergy investigation on an ammonia-methane fueled micro-combustor with porous medium for thermophotovoltaic applications. International Journal of Hydrogen Energy. 2024;49:384-400.
[53] Zhang J, Zhong A, Huang Z, Han D. Second-law thermodynamic analysis in premixed flames of ammonia and hydrogen binary fuels. Journal of Engineering for Gas Turbines and Power. 2019;141:071007.
[54] Emadi A, Emami M. Analysis of entropy generation in a hydrogen-enriched turbulent non-premixed flame. International journal of hydrogen energy. 2013;38:5961-73.
[55] Briones AM, Mukhopadhyay A, Aggarwal SK. Analysis of entropy generation in hydrogen-enriched methane–air propagating triple flames. international journal of hydrogen energy. 2009;34:1074-83.
[56] Glarborg P, Miller JA, Ruscic B, Klippenstein SJ. Modeling nitrogen chemistry in combustion. Progress in energy and combustion science. 2018;67:31-68.
[57] De Nevers N. Air pollution control engineering: Waveland press; 2010.
[58] Miller JA, Bowman CT. Mechanism and modeling of nitrogen chemistry in combustion. Progress in energy and combustion science. 1989;15:287-338.
[59] Bowman CT. Control of combustion-generated nitrogen oxide emissions: technology driven by regulation. Symposium (International) on Combustion: Elsevier; 1992. p. 859-78.
[60] Glarborg P, Jensen A, Johnsson JE. Fuel nitrogen conversion in solid fuel fired systems. Progress in energy and combustion science. 2003;29:89-113.
[61] Glarborg P. Hidden interactions—Trace species governing combustion and emissions. Proceedings of the combustion institute. 2007;31:77-98.
[62] Kikuchi K, Murai R, Hori T, Akamatsu F. Fundamental study on ammonia low-NOx combustion using two-stage combustion by parallel air jets. Processes. 2021;10:23.
[63] Wu X, Feng Y, Gao Y, Xia C, Zhu Y, Shreka M, et al. Numerical simulation of lean premixed combustion characteristics and emissions of natural gas-ammonia dual-fuel marine engine with the pre-chamber ignition system. Fuel. 2023;343:127990.
[64] Datta A. Effects of gravity on structure and entropy generation of confined laminar diffusion flames. International journal of thermal sciences. 2005;44:429-40.
[65] Reid RC, Prausnitz JM, Poling BE. The properties of gases and liquids. 1987.
[66] Poling BE, Prausnitz JM, O'connell JP. The properties of gases and liquids: Mcgraw-hill New York; 2001.
[67] Franssen J-M, Real PV. Fire Design of Steel Structures: EC1: Actions on structures; Part 1-2: Actions on structure exposed to fire; EC3: Design of steel structures; Part 1-2: Structural fire design: John Wiley & Sons; 2016.
[68] Koch E. Ammonia–a fuel for motor buses. J Inst Pet. 1945;31:213.
[69] Yan B, Wu Z, Zhou S, Lv J, Liu X, Wu W, et al. A critical review of NH3–H2 combustion mechanisms. Renewable and Sustainable Energy Reviews. 2024;196:114363.
[70] Otomo J, Koshi M, Mitsumori T, Iwasaki H, Yamada K. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy. 2018;43:3004-14.
[71] Konnov A, Ruyck JD. Kinetic modeling of the thermal decomposition of ammonia. Combustion science and technology. 2000;152:23-37.
[72] Konnov AA. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combustion and Flame. 2009;156:2093-105.
[73] Mendiara T, Glarborg P. Ammonia chemistry in oxy-fuel combustion of methane. Combustion and Flame. 2009;156:1937-49.
[74] combustion TSDmc-kmf, applications. http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html. .
[75] Smith GP GD, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, et al. http://www.me.berkeley.edu/grimech/. .
[76] Kobayashi H, Hayakawa A, Somarathne KKA, Okafor EC. Science and technology of ammonia combustion. Proceedings of the combustion institute. 2019;37:109-33.
[77] Valera-Medina A, Amer-Hatem F, Azad AK, Dedoussi I, De Joannon M, Fernandes R, et al. Review on ammonia as a potential fuel: from synthesis to economics. Energy & Fuels. 2021;35:6964-7029.
[78] Xiao H, Valera-Medina A, Bowen PJ. Study on premixed combustion characteristics of co-firing ammonia/methane fuels. Energy. 2017;140:125-35.
[79] Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, et al. Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism. Combustion and Flame. 2019;204:162-75.
[80] Bejan A. Advanced engineering thermodynamics: John Wiley & Sons; 2016.
[81] Morris DR, Szargut J. Standard chemical exergy of some elements and compounds on the planet earth. Energy. 1986;11:733-55.
校內:2027-08-31公開