| 研究生: |
蕭惟元 Hsiao, Wei-Yuan |
|---|---|
| 論文名稱: |
不同氣體介質與孔質材料對於史特靈熱泵的性能影響 Influence of Different Gas Mediums and Porous Materials on the Performance of Stirling Heat Pump |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 史特靈熱泵 、再生器孔質材料 、孔隙率 、性能係數 、放熱率 |
| 外文關鍵詞: | Stirling heat pump, Regenerator porous materials, Porosity, Coefficient of performance, Heat rejection rate |
| 相關次數: | 點閱:45 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將分為兩個部分,第一部分探討史特靈熱泵使用不同的氣體介質,在不同操作壓力與轉速下對性能影響。以實驗值得出的熱端放熱率與機械輸入功率定義實驗性能係數COP_M作為評斷指標。第二部分使用第一部分得出最佳性能下的氣體介質,探討再生器孔質材料對於史特靈熱泵性能影響。理論方面,採取非理想絕熱模型,考量氣體介質流經各腔室和截面變化所產生的壓降,利用熱阻計算熱傳,此處熱傳包含壁面與氣體介質和壁面與水套間的熱傳。並將實驗與理論值相互驗證。本研究結果顯示,在4 bar與轉速500 rpm的操作下,性能表現最佳者為氫氣,其次為氦氣、氮氣和空氣,最佳性能係數COP_M為2.35,並在5 bar與轉速1000 rpm的條件下,最高熱端出口水溫可達40.91度。再生器孔質材料的實驗的結果顯示,以氫氣為氣體介質,以及以不鏽鋼為材質時,孔隙率在0.64,操作壓力同為4 bar與轉速500 rpm的條件下,可進一步將性能係數COP_M提升至2.37。
This research is divided into two parts. The first part explores the performance of Stirling heat pumps using different gas mediums at various operating pressures and rotational speeds. The experimental performance coefficient 〖COP〗_M is defined using the experimentally obtained heat rejection rate at the hot end and mechanical input power as the evaluation index. In the second part, the optimal gas mediums identified from the first part is used to investigate the impact of regenerator porous materials on the performance of the Stirling heat pump. The theoretical approach adopts a non-ideal adiabatic model. The experimental and theoretical values are mutually validated. It indicates that under the operating conditions of 4 bar and 500 rpm, hydrogen exhibits the best performance among the tested gas mediums, followed by helium, nitrogen, and air, with the optimal 〖COP〗_M reaching 2.35. Regarding the experiments on regenerator porous materials, using hydrogen as the working fluid and stainless steel as the material with a porosity of 0.64, under the same operating conditions of 4 bar and 500 rpm, the 〖COP〗_M can be further improved to 2.37.
[1] Olabi Abdul Ghani, Abdelkareem Mohammad Ali. "Renewable energy and climate change." Renewable and Sustainable Energy Reviews 158 (2022): 112111.
[2] 姚楊,水循環熱泵空調系統設計,第二版,化學工業出版社,北京,2011。
[3] Nicolas Léonard Sadi Carnot, Reflections on the motive power of fire, John Wiley & Sons, Inc, London, pp. 85-86, 1897.
[4] Zogg Martin. "History of heat pumps-Swiss contributions and international milestones." (2008).
[5] Khan Umara, Zevenhoven Ron, Stougie Lydia, Tveit Tor-Martin. "Life cycle cost analysis (LCCA) of Stirling-cycle-based heat pumps vs. conventional boilers." Cleaner Environmental Systems 8 (2023): 100105.
[6] 陳宏信,瓩級史特靈熱泵之實驗與理論分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2019。
[7] 游硯評,熱交換器設計對史特靈熱泵性能的影響,國立成功大學航空及太空工程學系碩士學位論文,台南,2021。
[8] 蔡勝霖,不同冷端與熱端熱交換器組合對史特靈熱泵性能的影響,國立成功大學航空及太空工程學系碩士學位論文,台南,2022。
[9] Gadelkareem T.M., EldeinHussin A.M.T.A., Hennes G.M., El- Ehwany A.A. "Stirling cycle for hot and cold drinking water dispenser." International Journal of Refrigeration 99 (2019): 126-137.
[10] Easa Ammar S., Khalaf-Allah Reda A., Al-Nagdy Ahmed A., Tolan Mohamed T., Mohamed Salwa M. "Experimental study of saving energy and improving Stirling water dispenser performance using the waste heat of both pistons friction." Applied Thermal Engineering 213 (2022): 118727.
[11] Easa Ammar S., El-Maghlany Wael M., Hassan Mohamed M., Tolan Mohamed T. "The performance of a gamma-type stirling water dispenser with twin wavy plate heat exchangers." Case Studies in Thermal Engineering 39 (2022): 102464.
[12] Häggqvist Nico, Tor-Martin Tveit, and Ron Zevenhoven. "Combining measurements and simulation for condition monitoring and performance optimization of an alpha-configuration double-acting high-temperature Stirling cycle-based heat pump." Case Studies in Thermal Engineering (2023): 103066.
[13] Cheng Chin Hsiang, Yang Hang‐Suin, and Chen Hong‐Xin. "Development of a beta‐type Stirling heat pump with rhombic drive mechanism by a modified non‐ideal adiabatic model." International Journal of Energy Research 44.7 (2020): 5197-5208.
[14] Wang Riying, Hu Jianying, Jia Zilong, Zhang Limin, Luo Ercang. "Study on the temperature adaptability of free-piston Stirling heat pump." Energy Conversion and Management 249 (2021): 114864.
[15] Wang Riying, Hu Jianying, Jia Zilong, Luo Ercang, Xu Jingyuan, Sun Yanlei. "Performance study of a free-piston Stirling heat pump with a circumferential temperature gradient in the heating heat exchanger." International Journal of Refrigeration 146 (2023): 274-289.
[16] Luo Baojun, Li Yinfang, Chen Chunlin, Li Ruijie. " "Study on performance of Vuilleumier cycle heat pump for residential heating." Energy Conversion and Management 274 (2022): 116474.
[17] Li Ruijie, Lavinia Grosu, and Wei Li. "New polytropic model to predict the performance of beta and gamma type Stirling engine." Energy 128 (2017): 62-76.
[18] Xiao Gang, Qiu Hao, Wang Kai, Wang Jintao. "Working mechanism and characteristics of gas parcels in the Stirling cycle." Energy 229 (2021): 120708.
[19] Vaziri Bahram, Mohammad Azadi, Mojtaba Biglari, Seyed Navid Madani. "Simple‐mix: Thermodynamics modeling in a Gama‐type Stirling engine with a working fluid mixture." Engineering Reports (2023): e12656.
[20] Costa S.C., Barrutia Harritz, Esnaola Jon Ander, Tutar Mustafa. "Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator." Energy Conversion and Management 67 (2013): 57-65.
[21] Zbigniew Buliński, Adam Kabaj, Tomasz Krysiński, Ireneusz Szczygieł, Wojciech Stanek, Bartłomiej Rutczyk, Lucyna Czarnowska, Paweł Gładysz. "A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions." Energy Conversion and Management 195 (2019): 125-138.
[22] Tao Y.B., Liu Y.W., Gao F., Chen X.Y., He Y.L. "Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers." Cryogenics 49.9 (2009): 497-503.
[23] Chen Pengfan, Zhong Geyu, Niu Yafeng, Liu Yingwen. "Performance optimization of a free piston Stirling engine using multi-section regenerators based on the response surface methodology." Energy 261 (2022): 125221.
[24] Sheykhi Mohammad, and Mahmood Mehregan. "Improvement of technical performance of heat regenerator of GPU-3 Stirling engine." Energy Reports 9 (2023): 607-620.
[25] Martini, William R. Stirling engine design manual. No. NASA-CR-168088. 1983.
[26] 蔡東融,菱形驅動機構史特靈引擎之熱力循環量測,國立成功大學航空及太空工程學系碩士學位論文,台南,2009。
[27] Erol Derviş, Hayri Yaman, and Battal Doğan. "A review development of rhombic drive mechanism used in the Stirling engines." Renewable and Sustainable Energy Reviews 78 (2017): 1044-1067.
[28] Sa’ed A. Musmar, Iskander Tlili. "Numerical investigation of working fluid effect on Stirling engine performance." Int J Therm Environ Eng 10.1 (2015): 31-6.
[29] Cheng Chin Hsiang, and Tan Yi-Han. "Numerical optimization of a four-cylinder double-acting stirling engine based on non-ideal adiabatic thermodynamic model and scgm method." Energies 13.8 (2020): 2008.
[30] Cheng Chin Hsiang, and Yang Hang-Suin. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis." Energy 64 (2014): 970-978.
[31] 陳品穎,再生器孔隙率梯度對自由活塞式史特靈引擎效能之影響分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2022。
[32] Organ, Allan J. "The regenerator and the Stirling engine." (1997).
[33] Choi Sungryel, Kwanwoo Nam, and Sangkwon Jeong. "Investigation on the pressure drop characteristics of cryocooler regenerators under oscillating flow and pulsating pressure conditions." Cryogenics 44.3 (2004): 203-210.
[34] Ackermann Robert A. Cryogenic regenerative heat exchangers. Springer Science & Business Media, 2013.
[35] Warren M. Rohsenow, James P. Hartnett, and Young I. Cho. Handbook of Heat Transfer, New York, 1998.
[36] Bergman, Theodore L., Frank P. Incropera, Dewitt David P., & Lavine, A. S. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
校內:2026-08-30公開