簡易檢索 / 詳目顯示

研究生: 蕭惟元
Hsiao, Wei-Yuan
論文名稱: 不同氣體介質與孔質材料對於史特靈熱泵的性能影響
Influence of Different Gas Mediums and Porous Materials on the Performance of Stirling Heat Pump
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 史特靈熱泵再生器孔質材料孔隙率性能係數放熱率
外文關鍵詞: Stirling heat pump, Regenerator porous materials, Porosity, Coefficient of performance, Heat rejection rate
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將分為兩個部分,第一部分探討史特靈熱泵使用不同的氣體介質,在不同操作壓力與轉速下對性能影響。以實驗值得出的熱端放熱率與機械輸入功率定義實驗性能係數COP_M作為評斷指標。第二部分使用第一部分得出最佳性能下的氣體介質,探討再生器孔質材料對於史特靈熱泵性能影響。理論方面,採取非理想絕熱模型,考量氣體介質流經各腔室和截面變化所產生的壓降,利用熱阻計算熱傳,此處熱傳包含壁面與氣體介質和壁面與水套間的熱傳。並將實驗與理論值相互驗證。本研究結果顯示,在4 bar與轉速500 rpm的操作下,性能表現最佳者為氫氣,其次為氦氣、氮氣和空氣,最佳性能係數COP_M為2.35,並在5 bar與轉速1000 rpm的條件下,最高熱端出口水溫可達40.91度。再生器孔質材料的實驗的結果顯示,以氫氣為氣體介質,以及以不鏽鋼為材質時,孔隙率在0.64,操作壓力同為4 bar與轉速500 rpm的條件下,可進一步將性能係數COP_M提升至2.37。

    This research is divided into two parts. The first part explores the performance of Stirling heat pumps using different gas mediums at various operating pressures and rotational speeds. The experimental performance coefficient 〖COP〗_M is defined using the experimentally obtained heat rejection rate at the hot end and mechanical input power as the evaluation index. In the second part, the optimal gas mediums identified from the first part is used to investigate the impact of regenerator porous materials on the performance of the Stirling heat pump. The theoretical approach adopts a non-ideal adiabatic model. The experimental and theoretical values are mutually validated. It indicates that under the operating conditions of 4 bar and 500 rpm, hydrogen exhibits the best performance among the tested gas mediums, followed by helium, nitrogen, and air, with the optimal 〖COP〗_M reaching 2.35. Regarding the experiments on regenerator porous materials, using hydrogen as the working fluid and stainless steel as the material with a porosity of 0.64, under the same operating conditions of 4 bar and 500 rpm, the 〖COP〗_M can be further improved to 2.37.

    摘要I AbstractII 誌謝XI 目錄XIII 表目錄XVI 圖目錄XVII 符號索引XIX 第一章 前言1 1.1 研究背景與動機1 1.2 文獻回顧2 1.3 史特靈熱泵概要5 1.3.1 史特靈熱泵5 1.3.2 工作原理6 1.4 研究目的7 1.5 論文架構8 第二章 理論模式9 2.1 起始條件9 2.1.1 初始體積10 2.1.2 初始質量11 2.2 熱力模型12 2.3 各腔室熱力性質的計算15 2.3.1 再生室15 2.3.2 冷端與熱端熱交換器20 2.3.3 冷端熱交換器上蓋針狀熱沉25 2.3.4 壓縮室與膨脹室27 2.3.5 冷端和熱端水套29 2.3.6 熱泵性能指數29 第三章 實驗與設計32 3.1 實驗設計32 3.2 實驗設備32 3.2.1 真空幫浦33 3.2.2 恆溫水槽33 3.2.3 扭矩傳感器33 3.2.4 熱電偶34 3.2.5 直流無刷馬達34 3.2.6 馬達驅動器控制器34 3.2.7 數位功率表35 3.2.8 資料擷取器35 3.2.9 流量計35 3.3 實驗步驟36 第四章 結果與討論37 4.1 實驗配置37 4.2 不同氣體介質之模擬預測與實驗結果討論38 4.2.1 氣體介質為空氣38 4.2.2 氣體介質為氮氣39 4.2.3 氣體介質為氦氣40 4.2.4 氣體介質為氫氣41 4.3 再生孔質之影響42 第五章 結論45 參考文獻47

    [1] Olabi Abdul Ghani, Abdelkareem Mohammad Ali. "Renewable energy and climate change." Renewable and Sustainable Energy Reviews 158 (2022): 112111.
    [2] 姚楊,水循環熱泵空調系統設計,第二版,化學工業出版社,北京,2011。
    [3] Nicolas Léonard Sadi Carnot, Reflections on the motive power of fire, John Wiley & Sons, Inc, London, pp. 85-86, 1897.
    [4] Zogg Martin. "History of heat pumps-Swiss contributions and international milestones." (2008).
    [5] Khan Umara, Zevenhoven Ron, Stougie Lydia, Tveit Tor-Martin. "Life cycle cost analysis (LCCA) of Stirling-cycle-based heat pumps vs. conventional boilers." Cleaner Environmental Systems 8 (2023): 100105.
    [6] 陳宏信,瓩級史特靈熱泵之實驗與理論分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2019。
    [7] 游硯評,熱交換器設計對史特靈熱泵性能的影響,國立成功大學航空及太空工程學系碩士學位論文,台南,2021。
    [8] 蔡勝霖,不同冷端與熱端熱交換器組合對史特靈熱泵性能的影響,國立成功大學航空及太空工程學系碩士學位論文,台南,2022。
    [9] Gadelkareem T.M., EldeinHussin A.M.T.A., Hennes G.M., El- Ehwany A.A. "Stirling cycle for hot and cold drinking water dispenser." International Journal of Refrigeration 99 (2019): 126-137.
    [10] Easa Ammar S., Khalaf-Allah Reda A., Al-Nagdy Ahmed A., Tolan Mohamed T., Mohamed Salwa M. "Experimental study of saving energy and improving Stirling water dispenser performance using the waste heat of both pistons friction." Applied Thermal Engineering 213 (2022): 118727.
    [11] Easa Ammar S., El-Maghlany Wael M., Hassan Mohamed M., Tolan Mohamed T. "The performance of a gamma-type stirling water dispenser with twin wavy plate heat exchangers." Case Studies in Thermal Engineering 39 (2022): 102464.
    [12] Häggqvist Nico, Tor-Martin Tveit, and Ron Zevenhoven. "Combining measurements and simulation for condition monitoring and performance optimization of an alpha-configuration double-acting high-temperature Stirling cycle-based heat pump." Case Studies in Thermal Engineering (2023): 103066.
    [13] Cheng Chin Hsiang, Yang Hang‐Suin, and Chen Hong‐Xin. "Development of a beta‐type Stirling heat pump with rhombic drive mechanism by a modified non‐ideal adiabatic model." International Journal of Energy Research 44.7 (2020): 5197-5208.
    [14] Wang Riying, Hu Jianying, Jia Zilong, Zhang Limin, Luo Ercang. "Study on the temperature adaptability of free-piston Stirling heat pump." Energy Conversion and Management 249 (2021): 114864.
    [15] Wang Riying, Hu Jianying, Jia Zilong, Luo Ercang, Xu Jingyuan, Sun Yanlei. "Performance study of a free-piston Stirling heat pump with a circumferential temperature gradient in the heating heat exchanger." International Journal of Refrigeration 146 (2023): 274-289.
    [16] Luo Baojun, Li Yinfang, Chen Chunlin, Li Ruijie. " "Study on performance of Vuilleumier cycle heat pump for residential heating." Energy Conversion and Management 274 (2022): 116474.
    [17] Li Ruijie, Lavinia Grosu, and Wei Li. "New polytropic model to predict the performance of beta and gamma type Stirling engine." Energy 128 (2017): 62-76.
    [18] Xiao Gang, Qiu Hao, Wang Kai, Wang Jintao. "Working mechanism and characteristics of gas parcels in the Stirling cycle." Energy 229 (2021): 120708.
    [19] Vaziri Bahram, Mohammad Azadi, Mojtaba Biglari, Seyed Navid Madani. "Simple‐mix: Thermodynamics modeling in a Gama‐type Stirling engine with a working fluid mixture." Engineering Reports (2023): e12656.
    [20] Costa S.C., Barrutia Harritz, Esnaola Jon Ander, Tutar Mustafa. "Numerical study of the pressure drop phenomena in wound woven wire matrix of a Stirling regenerator." Energy Conversion and Management 67 (2013): 57-65.
    [21] Zbigniew Buliński, Adam Kabaj, Tomasz Krysiński, Ireneusz Szczygieł, Wojciech Stanek, Bartłomiej Rutczyk, Lucyna Czarnowska, Paweł Gładysz. "A Computational Fluid Dynamics analysis of the influence of the regenerator on the performance of the cold Stirling engine at different working conditions." Energy Conversion and Management 195 (2019): 125-138.
    [22] Tao Y.B., Liu Y.W., Gao F., Chen X.Y., He Y.L. "Numerical analysis on pressure drop and heat transfer performance of mesh regenerators used in cryocoolers." Cryogenics 49.9 (2009): 497-503.
    [23] Chen Pengfan, Zhong Geyu, Niu Yafeng, Liu Yingwen. "Performance optimization of a free piston Stirling engine using multi-section regenerators based on the response surface methodology." Energy 261 (2022): 125221.
    [24] Sheykhi Mohammad, and Mahmood Mehregan. "Improvement of technical performance of heat regenerator of GPU-3 Stirling engine." Energy Reports 9 (2023): 607-620.
    [25] Martini, William R. Stirling engine design manual. No. NASA-CR-168088. 1983.
    [26] 蔡東融,菱形驅動機構史特靈引擎之熱力循環量測,國立成功大學航空及太空工程學系碩士學位論文,台南,2009。
    [27] Erol Derviş, Hayri Yaman, and Battal Doğan. "A review development of rhombic drive mechanism used in the Stirling engines." Renewable and Sustainable Energy Reviews 78 (2017): 1044-1067.
    [28] Sa’ed A. Musmar, Iskander Tlili. "Numerical investigation of working fluid effect on Stirling engine performance." Int J Therm Environ Eng 10.1 (2015): 31-6.
    [29] Cheng Chin Hsiang, and Tan Yi-Han. "Numerical optimization of a four-cylinder double-acting stirling engine based on non-ideal adiabatic thermodynamic model and scgm method." Energies 13.8 (2020): 2008.
    [30] Cheng Chin Hsiang, and Yang Hang-Suin. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis." Energy 64 (2014): 970-978.
    [31] 陳品穎,再生器孔隙率梯度對自由活塞式史特靈引擎效能之影響分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2022。
    [32] Organ, Allan J. "The regenerator and the Stirling engine." (1997).
    [33] Choi Sungryel, Kwanwoo Nam, and Sangkwon Jeong. "Investigation on the pressure drop characteristics of cryocooler regenerators under oscillating flow and pulsating pressure conditions." Cryogenics 44.3 (2004): 203-210.
    [34] Ackermann Robert A. Cryogenic regenerative heat exchangers. Springer Science & Business Media, 2013.
    [35] Warren M. Rohsenow, James P. Hartnett, and Young I. Cho. Handbook of Heat Transfer, New York, 1998.
    [36] Bergman, Theodore L., Frank P. Incropera, Dewitt David P., & Lavine, A. S. Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.

    無法下載圖示 校內:2026-08-30公開
    校外:2026-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE