簡易檢索 / 詳目顯示

研究生: 方振隆
Fang, Cheng-Lung
論文名稱: 以腦波控制之主動式義手
Active Prosthetic Hand for Brain-Computer-Interface
指導教授: 朱銘祥
Ju, Ming-Shaung
林宙晴
Lin, Chou-Ching K.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 58
中文關鍵詞: 義手人腦電腦介面
外文關鍵詞: BCI, prosthetic hand
相關次數: 點閱:63下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   某些疾病會中斷大腦與肌肉間的神經肌肉管道,例如腦幹中風、脊髓損傷、肌萎縮性脊髓側索硬化症 (amyotrophic lateral sclerosis) 等等,它們會傷害控制肌肉的神經或直接傷害肌肉,嚴重者可能會失去所有隨意肌的控制能力,包括眼動、呼吸,即陷入閉鎖(lock-in)狀態,人腦電腦介面(Brain Computer Interface, BCI)系統即為幫助這些病患回復與外界溝通能力的方法之一。
      本研究使用鋼索傳動的方式,建構了一套具抓握功能的義手,人腦電腦介面偵測使用者自主想像動作所刺激的腦波變化,辨識波抑制現象,控制義手幫助原本無法活動的手指進行即時的屈曲和伸張動作,透過感測器回授握力與控制介面過濾腦波辨識命令以恢復手掌抓握功能。完成之義手指套轉動範圍20至100度,指尖出力2Kgw,足可抓握240g瓷杯。

      Some diseases can disrupt the neuromuscular channels between brain and muscle, such as brainstem stroke, spinal cord injury, amyotrophic lateral sclerosis and so on. Those most severely affected may lose all voluntary muscle control, including eye movements and respiration, or completely locked in to their bodies. Brain computer interface (BCI) is one of the solutions to help these patients restoring function of communicating with the external world.
      Is this thesis, a tendon-driven prosthetic hand was built, and interfaced to a BCI that can detect the variation of EEG induced by imaginary movement. In particular, the variation of  wave was employed by the BCI to identify the patient’s intent. The prosthetic hand can assist the flexion and extension of the patient’s index finger in real time. Through the force sensor and control interface, the prosthetic hand can measure the gripping force and restore the subject’s gripping function. The finger tube of the prosthetic hand has a range of movement 20 to 100 degrees, and a gripping force ranged from 0 to 2Kgw and the subject is able to fetch a cup with a weight of 240g from a table.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 vii 符號表 viii 第一章 緒論 1-1 研究背景 1 1-2 大腦皮質電位 2 1-3 腦波的特性 4 1-4 小波分析與類神經網路 5 1-5 人腦-電腦介面 6 1-6 文獻回顧 8 1-7 研究動機與目的 9 第二章 研究方法與實驗 2-1以腦波控制之義手系統 11 2-1-1義手結構設計 11 2-1-2義手系統 14 2-1-3馬達出力與義手握力 16 2-1-4義手模型 19 2-1-5力量感測器校正 22 2-1-5義手控制 25 2-1-6 控制邏輯 28 2-2實驗設計 30 2-2-1角度控制實驗 2-2-2抓握控制實驗 第三章 結果與討論 3-1硬體設計結果 33 3-2角度控制實驗結果 39 3-3力量控制實驗結果 45 3-4抓握實驗結果 47 3-5控制邏輯 51 第四章 結論與建議 4-1 結論 55 4-2 建議 56 參考文獻 57

    [1] 張丙龍,彭英毅,張月蘭,解剖生理學(第四版) ,南山堂出版社,1996
    [2] C. H. Cheng, “Real-time identification of μ wave with wavelet neural networks” 1st International IEEE EMBS Special Topic Conference on Neural Engineering ,2003.
    [3] G.. Pfurtscheller, C. Neuper, B. Obermaier , G.. Krausz, “Graz- BCI : State of the Art and Clinical Applications,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 2, pp.177-180 ,JUNE 2003.
    [4] G. C. Burdea, Force and touch feedback for virtual reality, A Wiley-Interscience Publication, 1996.
    [5] C. Guger, A. Schlogl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer interface(BCI),” IEEE Trans. Neural Syst. Rehab. Eng., vol. 9, pp. 49-58 Mar. 2001.
    [6] J. Wolpaw, N. Birbaumer, D. McFarland, G.. Pfurtscheller, T. Vaughan, “Brain- computer interfaces for communication and control” Clinical Neurophysiology, vol.113, pp.767-791, 2002.
    [7] Eleanor A. Curran, Maria J. Stokes, “Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems” Brain and Cognition, vol. 51, pp. 326-336, 2003.
    [8] Niels Birbaumer; Thilo Hinterberger; Andrea Kubler; Nicola Neumann, “The Thought-Translation Device(TTD):Neurobehavioral Mechanisms and Clinical Outcome” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 2, pp.120-123, June , 2003.
    [9] T. Hinterberger, A. Kubler, J. Kaiser, N. Neumann, N. Birbaumer, “A brain-computer interface (BCI) for the lock-in: comparison of different EEG classifications for the thought translation device” Clinical Neurophysiology, vol. 114, pp. 416-425, 2003.
    [10] L. Bianchi, F. Babiloni, F. Cincotti, M. Arrivas, P. Bollero, M. Grazia Marciani, “Developing Wearable Bio-Feedback Systems:A General-Purpose Platform,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 2, pp. 117-119, JUNE, 2003.
    [11] 王政道,林宙晴,朱銘祥, 〝運用μ波為控制源之研究〞,中華民國八十七年醫學工程科技研討會論文集,pp. 3-4.
    [12] Gernot R. Muller, Christa Neuper, G. Pfurtscheller, “Implementation of a telemonitoring system for the control of an EEG-based brain-computer interface” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 1, pp. 54-59, March, 2003.
    [13] X. R. Gao, D. F. Xu, M. Cheng, S. K. Gao, “A BCI-based environmental controller for the motion-disabled” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 2, pp. 137-140, JUNE 2003.
    [14] J. D. R.Millan, J. Mourino, “Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 2, pp. 159-161, JUNE, 2003.
    [15] B. Obermaier, G.. R. Muller, Member, “Virtual keyboard controlled by spontaneous EEG activity” IEEE Trans. Neural Syst. Rehab. Eng., vol. 11, No. 4, pp. 422-426, December, 2003.
    [16] G. Pfurtscheller, Gernot R. Muller, Jorg Pfurtscheller, Hans J. Gerner, R. Rupp, “Thought-control of functional stimulation to restore hand grasp in a patient with tetraplegia,” Neuroscience Letters, vol. 351, pp. 33-36, 2003.
    [17] C. M. Light, P. H. Chappell, P. J. Kyberd, “Establish a standardized clinical assessment tool of pathologic and prosthetic hand function: normative data, reliability, and validity,” Arch Phys Med Rehabil, vol. 83, pp. 776-783, June, 2002.

    下載圖示 校內:2007-07-21公開
    校外:2007-07-21公開
    QR CODE