簡易檢索 / 詳目顯示

研究生: 江松勳
Chiang, Sung-Hsun
論文名稱: AZO透明導電膜之製備與特性分析
Preparation and Characterization of AZO Transparent Conducting Films
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 88
中文關鍵詞: 摻鋁氧化鋅透明導電膜
外文關鍵詞: AZO, transparent conducting films
相關次數: 點閱:109下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本論文主要以溶凝膠法製備含銀或金奈米粒子之摻鋁氧化鋅(AZO)膠體溶液,經旋轉塗佈和乾燥後,在經第一次空氣鍛燒與第二次氫氣熱處理後,製得透明導電膜。探討不同微量金屬的混摻及製程變因對AZO薄膜光學與導電性質的影響。
    首先,製備含金或同時含金銀之AZO薄膜,探討熱處理對透明導電薄膜的電性及可見光透光度的影響。結果發現在同時添加金銀奈米粒子時,其電阻係數可達最低值為1.03×10-3Ω-cm。此外,在探討老化時間對含銀之AZO粒徑的影響,發現在老化5天後,其電阻係數更可低至9.38×10-4Ω-cm,為目前的最低值,且其薄膜光穿透度並未受影響。
    探討水熱處理對含銀之AZO透明導電膜性質的影響,發現省略空氣煅燒程序,直接進行氫氣熱處理亦為可行,且在500℃以下,銀奈米粒子的添加明顯有助於薄膜導電性的提高,在400℃時即低至7.5×10-3Ω-cm,但在AZO與含金之AZO薄膜方面,其電阻係數在溫度高於400℃後亦有明顯下降,但下降幅度不及含銀之AZO明顯,而且在500℃時其電阻係數非常接近,可發現金奈米粒子的添加並無法像銀一樣,對電阻係數有所幫助。至於水熱或溶熱處理的研究,目前以2-甲醚乙醇中溶熱處理似乎有可行之處,不過並未使其表面緻密化,導電度因而無法提升。

    英文摘要
    In this thesis, the Au or Ag-containing aluminum doped ZnO colloid solutions were prepared by sol-gel method. After spin coating, drying, calcinations in air and hydrogen heat treatment, the transparent conducting films were obtained. The effects of trace metal doping and process parameters on the optical property and conductivity of AZO films were studied.
    First, the Au or Au/Ag-containing AZO films were prepared and the effects of heat-treatment conditions on the conductivity and transparency in visible region were investigated. It was found that the electrical resistivity could be reduced to be 1.03×10-3 Ω-cm by the addition of Au/Ag nanoparticles. In addition, by investigating the effect of aging time on the grain size of Ag-containing AZO, it was found that the electrical resistivity was as low as 9.38×10-4 Ω-cm after aging 5 days. This was the lowest value in our research. Also, the decrease of transparency in visible region was negligible.
    By investigating the effects of hydrothermal or solvothermal treatments on the conductivity and transparency of Ag-containing AZO films, the direct hydrogen treatment without the calcination in air was shown to be practicable. Below 500℃, the addition of Ag significantly raised the conductivity of AZO films. At 400℃, the electrical resistivity was as low as 7.5×10-3 Ω-cm. For AZO and Au-containing AZO films, the electrical resistivity was also reduced above 400℃ but the reduction was not significant as that for Ag-containing AZO films. Also, their resistivities were close at 500℃. It was found that the addition of Au did not reduce the electrical resistivity as the addition of Ag did. As for the study on the hydrothermal or solvothermal treatments, it was found that the solvothermal treatment in 2-methoxyethanol seemed to be practicable. However, the surface layer was not dense enough so that the electric conductivity was not raised.

    總 目 錄 頁次 中文摘要.......................................................I 英文摘要......................................................II 誌 謝...................................................... III 總目錄.......................................................Ⅳ 表目錄.......................................................Ⅶ 圖目錄.......................................................Ⅷ 第一章 緒論...................................................1 1.1 奈米科技..................................................1 1.1.1 前言....................................................1 1.1.2 奈米材料特性............................................2 1.1.3 奈米材料之製備與應用....................................7 1.2 透明導電膜的簡介.........................................10 1.2.1 透明導電膜.............................................10 1.2.2 透明導電膜的種類.......................................11 1.2.3 透明導電膜的製備.......................................13 1.3 研究動機.................................................16 第二章 理論基礎..............................................17 2.1 透明導電膜的原理.........................................17 2.1.1 概論...................................................17 2.1.2 透明導電膜的導電機制...................................20 2.1.3 透明導電膜的光學性質...................................22 2.2 溶膠-凝膠合成法..........................................26 2.2.1 概論...................................................26 2.2.2 溶膠-凝膠的水解與聚縮合反應............................27 2.2.3 氣凝膠與乾凝膠的形成...................................30 2.2.4 塗佈...................................................31 2.3 摻鋁氧化鋅(Al-doped ZnO).................................33 2.3.1 以溶膠-凝膠法製備摻鋁氧化鋅............................33 2.3.2 摻鋁氧化鋅的導電性質...................................36 2.4 水熱合成法...............................................37 2.4.1 概論...................................................37 2.4.2 水熱反應機構...........................................39 第三章 實驗部分..............................................40 3.1 實驗藥品、儀器與材料.....................................40 3.1.1 藥品...................................................40 3.1.2 儀器...................................................41 3.1.3 材料...................................................41 3.2 溶凝膠法製備含銀或金奈米立子之AZO透明導電膜之實驗........42 3.2.1 AZO溶凝膠的製備方法...................................43 3.2.2 含銀或金之AZO溶凝膠的製備方法..........................44 3.2.3 含銀或金之AZO透明導電膜的製作..........................45 3.2.4 氫氣熱處理之管型爐熱處理...............................46 3.2.5 含銀之AZO水熱處理的製備................................46 3.3 特性分析.................................................47 第四章 結果與討論............................................49 4.1 含銀或金之AZO之特性分析..................................49 4.1.1 粒徑與組成分析.........................................49 4.1.2 XRD分析...............................................53 4.2 熱處理參數對含金或銀之AZO透明導電膜性質的影響............54 4.2.1 熱處理最適化條件下製得之含金AZO薄膜的性質..............54 4.2.2 熱處理最適化條件下製得之同時含金與銀之AZO薄膜的性質....59 4.3 老化(Aging)時間對含銀之AZO透明導電膜性質的影響...........64 4.4 水熱處理對含銀之AZO透明導電膜性質的影響..................69 4.4.1 直接氫氣熱處理對含銀之AZO透明導電膜性質的影響..........69 4.4.2 水熱處理對含銀之AZO透明導電膜性質的影響................75 第五章 結論..................................................83 參考文獻.....................................................84 表 目 錄 頁次 表1.1 觀別定義與材料尺度之分類質..............................2 表1.2 奈米晶粒表面原子數與表面能量估計........................4 表1.3 奈米粒子的原子數以及表面原子所占的比率與粒徑的關係......5 表1.4 奈米材料的製備方法......................................8 表1.5 奈米材料的應用範圍......................................9 表1.6 透明導電膜依材質及電性之分類...........................11 表1.7 常見的TCO薄膜之基本性質................................12 表1.8 常見的TCO薄膜製備方法...........................................................14 表1.9 常見的TCO薄膜製備方法與應用...........................................................15 表2.1 ZnO摻雜其他金屬離子的製備方法與薄膜性質之比較..........34 表2.2 總結過去以溶膠-凝膠法製備氧化鋅薄膜....................35 表4.1 不同Au含量之AZO薄膜在氫氣處理前後之電阻係數............55 表4.2 不同Ag與Au含量之AZO薄膜在氫氣處理前後之電阻係數........60 表4.3 在不同老化(Aging)時間下所製得含銀之AZO的電阻係數.......65 表4.4 在不同氫氣熱處理溫度下所得AZO與含0.10 at.% Ag或Au之 AZO薄膜的電阻係數......................................71 表4.5 不同水熱或溶熱處理對含銀之AZO薄膜的影響................77 表4.6 經2-甲醚乙醇溶熱處理前後之電阻係數.....................77 表4.7 含銀之AZO經溶熱處理與氫氣處理後的電阻係數..............82 圖 目 錄 頁次 圖1.1 奈米粒子大小與原子分佈粒子表面比例之關係..............3 圖1.2 Pt金屬、Pt奈米粒子及Pt 原子分別在5d能階的電子佔有狀況.6 圖2.1 ITO薄膜在UV/VIS/NIR下所表現之光學特性................24 圖2.2 In2O3混摻雜質前後之能階結構變化(Burstein-Moss shift).25 圖2.3 pH值對溶凝膠結構的影響...............................28 圖2.4 溶液pH值與金屬離子價數(Z)對水合前驅鹽形態的影響......29 圖2.5 乾凝膠與氣凝膠的構造.................................30 圖2.6 浸漬塗佈法示意圖.....................................32 圖2.7 旋轉塗佈示意圖.......................................32 圖3.1 實驗流程圖...........................................42 圖4.1 含Ag奈米粒子之AZO膠體粒子的TEM圖.....................50 圖4.2 含Ag奈米粒子之AZO膠體粒子的EDS圖.....................50 圖4.3 含Au奈米粒子之AZO膠體粒子的TEM圖.....................51 圖4.4 含Au奈米粒子之AZO膠體粒子的EDS圖.....................51 圖4.5 能隙值的變化圖.......................................52 圖4.6 AZO與含Ag或Au之AZO薄膜的XRD分析......................53 圖4.7 不同Au含量之AZO薄膜在氫氣處理前後之電阻係數..........55 圗4.8 含0.05 at% Au之AZO薄膜的SEM圖........................56 圖4.9 含0.10 at% Au之AZO薄膜的SEM圖........................56 圗4.10 含0.15 at% Au之AZO薄膜的SEM圖........................57 圖4.11 含0.1%Au之AZO薄膜橫截面圖............................57 圖4.12 不同Au含量之AZO薄膜的透光性..........................58 圖4.13 不同Ag與Au含量之AZO薄膜在氫氣處理前後之電阻係數......60 圖4.14 含Ag/Au= 0.025/0.075 at%之AZO薄膜的SEM圖.............61 圖4.15 含Ag/Au= 0.05/0.05 at%之AZO薄膜的SEM圖...............61 圖4.16 含Ag/Au= 0.075/0.025 at%之AZO薄膜的SEM圖.............62 圖4.17 含Ag/Au= 0.05/0.05 at%之AZO薄膜的橫截面圖............62 圖4.18 不同Ag與Au含量之AZO薄膜的透光性......................63 圖4.19 在不同老化(Aging)時間下所製得含銀之AZO的電阻係數.....65 圖4.20 老化3天所製得含銀之AZO的SEM與橫截面圖................66 圖4.21 老化4天所製得含銀之AZO的的SEM與橫截面圖..............66 圖4.22 老化5天所製得含銀之AZO的SEM與橫截面圖................67 圖4.23 不同老化時間下所製得含銀之AZO的透光性................67 圖4.24 老化2次所製得的含銀之AZO的SEM圖......................68 圖4.25 老化8次所製得的含銀之AZO的SEM圖......................68 圖4.26 不同氫氣熱處理溫度對AZO與含0.10 at.% Ag或Au之AZO 薄膜電阻係數的影響...................................72 圖4.27 在不同氫氣熱處理溫度下所得AZO薄膜的透光性............73 圖4.28 在不同氫氣熱處理溫度下所得Ag之AZO薄膜的透光性........73 圖4.29 在不同氫氣熱處理溫度下所得Au之AZO薄膜的透光..........74 圖4.30 AZO薄膜乾燥後及經水熱或溶熱處理後的XRD圖.............78 圖4.31 AZO薄膜乾燥後及經水熱或溶熱處理後的透光性............78 圖4.32 含銀之AZO膠體溶液在水熱處理前的熱性質分析............79 圖4.33 含銀之AZO膠體溶液經水熱處理後的熱性質分析............79 圖4.34 乾燥後之含銀之AZO薄膜的SEM圖.........................80 圖4.35 含銀之AZO薄膜經24小時溶熱處理後之SEM圖...............80 圖4.36 含銀之AZO薄膜經48小時溶熱處理後之SEM圖...............81 圖4.37 含銀之AZO薄膜經48小時溶熱處理後之橫截面圖............81 圖4.38 含銀之AZO在氫氣處理前後的電阻係數....................82

    參考文獻
    1. 張立德、牟季美,奈米材料和奈米結構,滄海書局 (2002).
    2. K. E. Drexler, Engines of Creation. London:Fourth Estate (1990).
    3. 王崇人,神奇奈米科學,科學發展月刊,354,48 (2002).
    4. 馬振基,奈米材料科技原理與應用,全華科技圖書 (2003).
    5. 李傳宏、黃佩珍、盧成基、彭國光、徐文泰,奈米材料- 介觀化學世界,工業材料,60 (2001).
    6. 莊萬發,超微粒子理論應用,復漢出版社 (1995).
    7. 張揚狀,表面被覆幾丁聚醣之多功能磁性奈米載體的製備與用,國立成功大學化學工程研究所博士論文 (2005).
    8. K. L. Chopra, S. Magor, and D. K. Pandya, Thin Solid Films, 102, 1 (1983).
    9. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films, Institute of Physics Publishing (1995).
    10. C. Lee, K. Lim, and J. Song, Sol. Energy Mater. Sol. Cells, 43,37(1996).
    11. D. S. Ginley and C. Bright, MRS Bull., Aug., 15 (2000).
    12. T. Minami, MRS Bull., Aug., 38 (2000).
    13. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V.Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).
    14. 潘漢昌、蕭銘華、蘇健穎、蕭健男,透明導電膜簡介,科儀新知,26,46 (2004).
    15. P. K. Song, M. Watanabe, M. Kon, A. Mitsui, and Y. Shigesato, Thin Solid Films, 411, 82 (2002).
    16. M. Miyazaki, K. Sato, A. Misui, and H. Nishimura, J.Non-Cryst.Solids, 218, 323 (1997).
    17. M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, J. Appl. Phys., 94, 5240 (2003).
    18. Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, J. Cryst. Growth, 259, 130 (2003).
    19. B. M. Ataev, A. M. Bagamadova, A. M.Djabrailov, V. V. Mamedov, and R. A.    Rabadanov, Thin Solid Films, 260, 19 (1995).
    20. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Japan J. Appl. Phys., 36, L1453 (1997).
    21. S. Major, A. Banerjee, and K. L. Chopra, Thin Solid Films, 108, 333 (1983).
    22. S. A. Studenikin, N. Golgeo, and M. Cocivera, J. Appl. Phys., 83, 2104 (1998).
    23. K. Y. Cheong, N. Muti, and S. R. Ramanan, Thin Solid Films, 410, 142 (2002).
    24. S. Fujihara, A. Siziki, and T. Kimura, J. Appl. Phys., 94, 2411 (2003).
    25. J. H. Lee and B. O. Park, Thin Solid Films, 426, 94 (2003).
    26 李玉華,透明導電膜及其應用,科儀新知,12,94 (1990).
    27. M. J. Alam1 and D.C. Cameron, Thin Solid Films, 420, 76 (2002).
    28. C. Delia, J. Altamirano, T. D. Gerardo, J. S. Sergio, J. S. Omar, and C.P. Rebeca, Sol. Energy Mater. Sol. Cells, 82, 35 (2004).
    29. K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, Appl. Phys.Lett., 83, 63 (2003).
    30. F. Chen, Z. Ye, W. Xu, B. Zhao, L. Zhu, and J. Lv, J. Cryst.Growth, 281,458 (2005).
    31. 陳建華,P-型透明導電膜應用於有機發光二極體,國立成功大學化學工程研究所碩士論文 (2003).
    32. 楊明輝,工業材料,179,134 (1999).
    33. S. Y. Lee and B. O. Park, Thin Solid Films, 484, 184 (2005).
    34. H. W. Lee, S. P. Laua, Y. G. Wanga, K. Y. Tse, H. H. Hng, and B. K. Tay, J. Cryst.Growth, 268, 596 (2004).
    35. Z. C. Zin, I. Hamberg, and C.G. Granqvist, J. Appl. Phys., 64, 5117 (1988).
    36. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., 24, L605 (1985).
    37. I. Hamberg and C. G. Granqvist, J. Appl. Phys., 60, R123 (1986).
    38. S. Fujihara, Y. Ogawa, and A. Kasai, Chem. Mater., 16, 2965 (2004).
    39. Y. Natsume and H. Sakata, Mater. Chem. Phys., 78, 170 (2002).
    40. N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan, and S. I. Petrosyan, Semicond. Sci. Tech., 20, 80 (2005).
    41. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press: San Diego, CA (1990).
    42. 吳坤陽,溶凝膠法製備含銀之AZO透明導電膜的研究,國立成功大學化學工程研究所碩士論文 (2005).
    43. B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev., 104, 3893 (2004).
    44. G. Gasparro, J. Putz, D. Ganz, and M. A. Aegerter, Sol. Energy Mater.Sol.Cells, 54, 287 (1997).
    45. P. M. R. Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F.    Singh, and D. A. Avasthi, Semicond. Sci. Tech., 20, 120 (2005).
    46. M. Ohyama, H. Kozuka, and T. Yoko, J. Am. Ceram. Soc., 81, 1622 (1998).
    47. T. Tsuchiya, T. Enomoto, and T. Sei, J. Non-Cryst. Solids, 178, 327 (1994).
    48. Y. Ohya, H. Saiki, and Y. Takahashi, J. Mater. Sci., 29, 4099 (1994).
    49. W. Tang and D. C. Cameron, Thin Solid Films, 238, 83 (1994).
    50. Y. Ohya, H. Saiki, T. Tanaka, and Y. Takahashi, J. Am. Ceram. Soc., 79, 825 (1996).
    51. K. Nishio, S. Miyake, T. Sei, Y. Watanabe, and T. Tsuchiya, J. Mater. Sci., 31, 3651 (1996).
    52. S. Sakka and R. M. Almeida, Handbook of Sol-Gel Science and Technology:Processing Characterization and Applications, Vol2, Kluwer Academic Publishers (2005).
    53. G. W. Morey, J. Am. Ceram. Soc., 36, 279 (1953).
    54. W. J. Dawson, Ceram. Bull., 67, 1673 (1988).
    55. S. Ohara, T. Mousavaand, M. Umestu, S. Takami, T. Adschiri, Y. Kuroki, and M. Takata, Solid State Ionics., 172, 261 (2004).
    56. 李書賢,水熱法製備矽酸鍶薄膜及其性質研究,國立成功大學化學研究所碩士論文 (1999).
    57. 林淑萍,LaMnO3粉末之製備及其性質之研究,國立成功大學化學研究所碩士論文 (2001).
    58. T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, J. Crystal Growth, 214, 72 (2000).
    59. J. Wang and L. Gao, J. Crystal Growth, 262, 290 (2004).
    60. H. Wei, Y. Wu, N. Lun, and C. Hu, Mater. Sci. Eng. A, 393, 80 (2005).
    61. M. Guo, P. Diao, and S. Cai, J. Solid State Chem., 178, 1864 (2005).

    下載圖示 校內:2008-06-19公開
    校外:2008-06-19公開
    QR CODE