| 研究生: |
鄭因軒 Cheng, Yin-Hsuan |
|---|---|
| 論文名稱: |
石墨烯類奈米材料對不同極性有機化合物的吸附和吸收雙重作用之研究 Graphene-based Nanomaterials as a Dual Sorbent for Organic Chemicals with Different Polarity |
| 指導教授: |
林財富
Lin, Tsair-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 石墨烯 、水中吸附 、奈米材料 、等溫吸附曲線 |
| 外文關鍵詞: | Graphene Oxide, Adsorption, Partition, Nanomaterial |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯類奈米材料(GBNMs)有著優越的電子及熱傳導率,因此在環境研究及各類工程材料領域有著相當的應用潛力。過去研究多將石墨烯類材料視為傳統吸附材料,並多以表面吸附行為描述石墨烯類奈米材料與有機汙染物之間的作用。本研究提出石墨烯類奈米材料,對於有機汙染物同時具有吸附(adsorption)及吸收(partition)作用,成為獨特的一種雙重吸持劑(dual sorbent)來保留有機化合物。藉由不同有機化合物大範圍相對平衡濃度下的等溫吸附實驗數據,以及文獻數值推測出,在室溫的環境下GBNMs產生似液體的擾動,使之有如溶劑般對有機化合物產生分配作用。由於同時存在吸附及吸收的雙重作用現象,因此常規之吸附模型沒辦法符合GBNMs的數據。
石墨烯結構之GBNM,當具有大量分離單層時,除有相對較大的比表面積外,更因單層結構產生使之似液體溶劑效應,靠著吸收(partition)作用容納和共存多種有機物質,在室溫下為液體的化合物,其容納量超越了一般常見之吸附劑。另一方面,GBNMs具雙層作用之假設可清楚解釋先前文獻無法釐清之現象,例如在競爭環境下GBNMs仍具有相當高的吸附容量,及在以單位面積計算所得之吸附容量與傳統活性碳吸附劑之顯著差異。本研究透過超音波震盪,提供GBNM在不同分離單層程度的情況下之吸附吸收能力。
本研究以苯(BEN)、萘(NPL)及草脫淨(ATZ)為吸附質探討GBNMs產生吸收作用與其溶質活性(Solute Activity)的關係,並發現其之間的潛在相關性。此外硝基苯(NBZ)及2-氯苯胺(2CA)則為佐證吸收作用在不同極性化合物之間的泛用性。最後本研究探討不同型態之GBNM之間的吸附吸收作用,廣泛的溶質吸附及吸收量為GBNMs同時存在的新型吸附與吸收作用提供關鍵的說明。
Graphene-based nanomaterials (GBNMs) are considered to be a promising material in many applications. The unique sp-2 carbon layer structures of GBNMs make for their superior electrical conductivities, thermal conductivities, and specific surface areas. In this study, GBNMs is identified to be a dual sorbent for organic chemicals on the basis of the concurrent competitive adsorption and non-competitive partition for benzene (BEN), naphthalene (NPL) atrazine (ATZ), and others. Here the decoupled partition capacity of liquid BEN with a GBNM is drastically higher than that of NPL and ATZ because of the melting-point effect on the solid-solute activity or solubility.
These data suggest that the well detached relatively free graphene monolayers develop a liquid-like motion in water at room temperature, which enables them to attract organic solutes like a “solvent” in concomitance with the solute adsorption on the highly aggregated graphene phase. The dual sorption characteristic of GBNMs cannot be reconciled by the conventional adsorption model. Since GBNMs of high surface areas likely contain a large fraction of mobile graphene monolayers, thus both the adsorption and partition capacities of an organic solute with a GBNM may correlate with the GBNM surface area, as found. The unique partition effect of GBNMs enables them to withhold a large quantity of multiple organic chemicals (especially, liquids). In addition, the proposed GBNM dual-sorbent concept clarifies other unresolved observations, such as the highly concentration-dependent solute competitive effect and the highly variable “adsorbed capacities” per unit surface area of different organic solutes on a GBNM in comparison to those with a conventional adsorbent.
Alazmi, A., El Tall, O., Rasul, S., Hedhili, M. N., Patole, S. P., & Costa, P. M. (2016). A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale, 8(41), 17782-17787. doi:10.1039/c6nr04426c
Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb Carbon: A Review of Graphene. Chemical reviews, 110(1), 132-145. doi:10.1021/cr900070d
Apul, O. G., & Karanfil, T. (2015). Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research, 68, 34-55. doi:10.1016/j.watres.2014.09.032
Apul, O. G., Wang, Q., Zhou, Y., & Karanfil, T. (2013). Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Water Research, 47(4), 1648-1654. doi:10.1016/j.watres.2012.12.031
Baby, R., Saifullah, B., & Hussein, M. Z. (2019). Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation. Nanoscale Res Lett, 14(1), 341. doi:10.1186/s11671-019-3167-8
Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), 902-907. doi:10.1021/nl0731872
Bianco, S. (2011). Carbon Nanotubes: From Research to Applications: BoD–Books on Demand.
Botas, C., Pérez-Mas, A. M., Álvarez, P., Santamaría, R., Granda, M., Blanco, C., & Menéndez, R. (2013). Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon, 63, 576-578. doi:10.1016/j.carbon.2013.06.096
Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309-319.
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109-162. doi:10.1103/RevModPhys.81.109
Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental science & technology, 42(14), 5137-5143.
Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical reviews, 112(11), 6027-6053. doi:10.1021/cr300115g
Chen, R. (2020). Graphene-based Nanomaterials as a Novel Dual sorbent for Organic Chemicals. 國立成功大學環境工程學系碩士論文, Retrieved from https://hdl.handle.net/11296/g4ey6e
Chen, W., Duan, L., & Zhu, D. (2007). Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental science & technology, 41(24), 8295-8300.
Chen, X., & Chen, B. (2015). Macroscopic and spectroscopic investigations of the adsorption of nitroaromatic compounds on graphene oxide, reduced graphene oxide, and graphene nanosheets. Environmental science & technology, 49(10), 6181-6189. doi:10.1021/es5054946
Chiou, C. (2003). Fundamentals of the Adsorption Theory. In (pp. 39-52).
Chiou, C. T. (1995). Comment on "Thermodynamics of Organic Chemical Partition in Soils". Environmental science & technology, 29(5), 1421-1422. doi:10.1021/es00005a040
Chiou, C. T. (2003). Partition and adsorption of organic contaminants in environmental systems: John Wiley & Sons.
Chiou, C. T., Cheng, J., Hung, W. N., Chen, B., & Lin, T. F. (2015). Resolution of Adsorption and Partition Components of Organic Compounds on Black Carbons. Environmental science & technology, 49(15), 9116-9123. doi:10.1021/acs.est.5b01292
Chiou, C. T., Schmedding, D. W., & Manes, M. (1982). Partitioning of organic compounds in octanol-water systems. Environmental science & technology, 16(1), 4-10.
Chiou, C. T., Schmedding, D. W., & Manes, M. (2005). Improved prediction of octanol− water partition coefficients from liquid− solute water solubilities and molar volumes. Environmental science & technology, 39(22), 8840-8846.
Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and Sorptive Properties of Crop Residue-Derived Chars. Environmental science & technology, 38(17), 4649-4655. doi:10.1021/es035034w
Ciesielski, A., & Samori, P. (2014). Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev, 43(1), 381-398. doi:10.1039/c3cs60217f
Compton, O. C., An, Z., Putz, K. W., Hong, B. J., Hauser, B. G., Catherine Brinson, L., & Nguyen, S. T. (2012). Additive-free hydrogelation of graphene oxide by ultrasonication. Carbon, 50(10), 3399-3406. doi:10.1016/j.carbon.2012.01.061
Dékány, I., Krüger-Grasser, R., & Weiss, A. (1998). Selective liquid sorption properties of hydrophobized graphite oxide nanostructures. Colloid and Polymer Science, 276(7), 570-576.
Dan, H., Li, N., Xu, X., Gao, Y., Huang, Y., Akram, M., . . . Yue, Q. (2020). Mechanism of sonication time on structure and adsorption properties of 3D peanut shell/graphene oxide aerogel. Sci Total Environ, 739, 139983. doi:10.1016/j.scitotenv.2020.139983
Dastgheib, S. A., Karanfil, T., & Cheng, W. (2004). Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 42(3), 547-557.
De Volder, M. F., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon nanotubes: present and future commercial applications. science, 339(6119), 535-539.
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H., Evmenenko, G., . . . Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152), 457-460. doi:10.1038/nature06016
Ersan, G., Kaya, Y., Apul, O. G., & Karanfil, T. (2016). Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Sci Total Environ, 565, 811-817. doi:10.1016/j.scitotenv.2016.03.224
Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). Intrinsic ripples in graphene. Nat Mater, 6(11), 858-861. doi:10.1038/nmat2011
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. doi:10.1016/j.cej.2009.09.013
Freundlich, H. (1906). Over the adsorption in solution. J. Phys. Chem, 57(385471), 1100-1107.
Geim, A. K. (2009). Graphene: status and prospects. science, 324(5934), 1530-1534.
Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19): World Scientific.
Gupta, V. K., & Saleh, T. A. (2013). Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res Int, 20(5), 2828-2843. doi:10.1007/s11356-013-1524-1
Harter, R. D., & Smith, G. (1981). Langmuir equation and alternate methods of studying “adsorption” reactions in soils. Chemistry in the soil environment, 40, 167-182.
Huh, S. H. (2011). Thermal reduction of graphene oxide. Physics and Applications of Graphene-Experiments, 73-90.
Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
Hung, W.-N., Lin, T.-F., & Chiou, C. T. (2013). Solution Models for Binary Components of Significantly Different Molecular Sizes. Journal of Solution Chemistry, 42(7), 1438-1451. doi:10.1007/s10953-013-0041-7
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58.
Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. doi:10.1038/363603a0
İlbay, Z., Haşimoğlu, A., Özdemir, O. K., Ateş, F., & Şahin, S. (2017). Highly efficient recovery of biophenols onto graphene oxide nanosheets: Valorisation of a biomass. Journal of Molecular Liquids, 246, 208-214.
Kemp, K. C., Seema, H., Saleh, M., Le, N. H., Mahesh, K., Chandra, V., & Kim, K. S. (2013). Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale, 5(8), 3149-3171. doi:10.1039/c3nr33708a
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
Lastoskie, C., Gubbins, K. E., & Quirke, N. (1993). Pore size distribution analysis of microporous carbons: a density functional theory approach. The journal of physical chemistry, 97(18), 4786-4796.
Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. science, 321(5887), 385-388. doi:10.1126/science.1157996
Leo, A., Hansch, C., & Elkins, D. (1971). Partition coefficients and their uses. Chemical reviews, 71(6), 525-616.
Lewis, G. N., & Randall, M. (1923). Thermodynamics and the free energy of chemical substances: McGraw-Hill.
Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental science & technology, 42(19), 7254-7259.
Liu, G., Wang, J., Zhu, Y., & Zhang, X. (2004). Application of multiwalled carbon nanotubes as a solid‐phase extraction sorbent for chlorobenzenes. Analytical letters, 37(14), 3085-3104.
Manes, M. (1998). Activated carbon adsorption fundamentals. Encyclopedia of environmental analysis and remediation, 1, 26-68.
Manes, M., & Hofer, L. J. (1969). Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. The journal of physical chemistry, 73(3), 584-590.
Mouhat, F., Coudert, F. X., & Bocquet, M. L. (2020). Structure and chemistry of graphene oxide in liquid water from first principles. Nat Commun, 11(1), 1566. doi:10.1038/s41467-020-15381-y
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. science, 306(5696), 666-669. doi:10.1126/science.1102896
Pérez-Martínez, P., Galvan-Miyoshi, J. M., & Ortiz-López, J. (2016). Ultrasonic cavitation effects on the structure of graphene oxide in aqueous suspension. Journal of Materials Science, 51(24), 10782-10792. doi:10.1007/s10853-016-0290-0
Pan, B., Lin, D., Mashayekhi, H., & Xing, B. (2008). Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environmental science & technology, 42(15), 5480-5485.
Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011). Hydrazine-reduction of graphite- and graphene oxide. Carbon, 49(9), 3019-3023. doi:10.1016/j.carbon.2011.02.071
Park, W. K., Yoon, Y., Song, Y. H., Choi, S. Y., Kim, S., Do, Y., . . . Yang, W. S. (2017). High-efficiency exfoliation of large-area mono-layer graphene oxide with controlled dimension. Sci Rep, 7(1), 16414. doi:10.1038/s41598-017-16649-y
Pelekani, C., & Snoeyink, V. (1999). Competitive adsorption in natural water: role of activated carbon pore size. Water Research, 33(5), 1209-1219.
Pyrzynska, K., Stafiej, A., & Biesaga, M. (2007). Sorption behavior of acidic herbicides on carbon nanotubes. Microchimica Acta, 159(3-4), 293-298.
Sangster, J. (1989). Octanol‐water partition coefficients of simple organic compounds. Journal of Physical and Chemical Reference Data, 18(3), 1111-1229.
Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-Based Ultracapacitors. Nano Letters, 8(10), 3498-3502. doi:10.1021/nl802558y
Tang, H., Zhao, Y., Shan, S., Yang, X., Liu, D., Cui, F., & Xing, B. (2018). Theoretical insight into the adsorption of aromatic compounds on graphene oxide. Environmental Science: Nano, 5(10), 2357-2367. doi:10.1039/c8en00384j
Tewari, Y. B., Miller, M. M., Wasik, S. P., & Martire, D. E. (1982). Aqueous solubility and octanol/water partition coefficient of organic compounds at 25.0. degree. C. Journal of Chemical and Engineering Data, 27(4), 451-454.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117
Verschueren, K. (2001). Handbook of environmental data on organic chemicals: Vol. 1: John Wiley and Sons, Inc.
Wang, F., Haftka, J. J., Sinnige, T. L., Hermens, J. L., & Chen, W. (2014). Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles. Environ Pollut, 186, 226-233. doi:10.1016/j.envpol.2013.12.010
Wang, X., Liu, Y., Tao, S., & Xing, B. (2010). Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon, 48(13), 3721-3728. doi:10.1016/j.carbon.2010.06.034
Wu, L., Liu, L., Gao, B., Munoz-Carpena, R., Zhang, M., Chen, H., . . . Wang, H. (2013). Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir, 29(49), 15174-15181. doi:10.1021/la404134x
Yang, K., Wang, X., Zhu, L., & Xing, B. (2006). Competitive Sorption of Pyrene, Phenanthrene, and Naphthalene on Multiwalled Carbon Nanotubes. Environmental science & technology, 40(18), 5804-5810. doi:10.1021/es061081n
Yang, K., & Xing, B. (2010). Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical reviews, 110(10), 5989-6008.
Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W., & Liu, B. (2011). Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. Journal of Materials Chemistry, 21(18). doi:10.1039/c1jm10239g
Zhao, G., Jiang, L., He, Y., Li, J., Dong, H., Wang, X., & Hu, W. (2011). Sulfonated graphene for persistent aromatic pollutant management. Adv Mater, 23(34), 3959-3963. doi:10.1002/adma.201101007
Zhou, Y., Apul, O. G., & Karanfil, T. (2015). Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Research, 79, 57-67. doi:10.1016/j.watres.2015.04.017