簡易檢索 / 詳目顯示

研究生: 張國華
Chang, Kuo-Hua
論文名稱: 局部再成長方法應用於有機金屬氣相磊晶成長氮化鎵系列光電元件之研究
Selective-area Regrowth Technique Applied to GaN-Based Optoelectronic Devices Grown by Metalorganic Vapor Phase Epitaxy
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 177
中文關鍵詞: 氮化鎵選擇性成長發光二極體光偵測器
外文關鍵詞: GaN, selective-area regrowth, LEDs, photodetector
相關次數: 點閱:48下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以有機金屬氣相磊晶法成長氮化物半導體材料,並結合選擇性成長技術應用於發光二極體及光偵測器元件。首先利用二氧化矽介電材料當遮蔽層於氮化鎵基板上定義不同大小、形狀及開口率,探討氮化鎵及氮化鋁鎵材料於不同成長條件下的成長機制及負載效應 (loading effect),建立配合元件結構設計的成長參數。此外,探討二氧化矽和氮化鎵基板經高溫成長過程後,各元素於介面相互擴散情形對歐姆接觸特性的影響。商業化多將氮化鎵材料成長於不導電的藍寶石基板上,因此在元件製作上皆需要多一道乾式蝕刻步驟以利電極製作。利用選擇性成長方式直接定義出發光二極體元件大小,可省略乾式蝕刻製程;而磊晶成長條件使得元件周圍形成特定晶格方向的斜面,能有效的提升光萃取效率。此外,利用此選擇性成長技術得到一非平面的磊晶結構,元件幾何形狀的改變將有助於提升發光二極體電流均勻散佈的潛力。而將此選擇性成長技術應用於氮化鋁鎵系列 p-i-n 紫外光偵測器,不僅能夠得到和傳統製程方式相同的元件特性,還能有效減少氮化鋁鎵/氮化鎵異質接面成長所產生的張應力累積,此一特性非常有利於製作高鋁含量之p-i-n 紫外光偵測器。利用此技術更可成長倒置形的氮化鋁鎵系列p-i-n 紫外光偵測器,解決傳統低電阻率的p型氮化鋁鎵材料作為窗戶層,陽極電極製作不易和所導致短波段偵測嚴重的表面吸收問題。

    In this dissertation, selective-area grown (SAG) techniques performed by metalorganic vapor phase epitaxy (MOVPE) have been demonstrated to grow GaN-based light emitting diodes (LEDs) and AlGaN-based photodiodes (PDs). The SAG GaN and AlxGa1-xN epitaxial layers are grown on GaN template substrates with SiO2 mask layers. The SiO2–masked GaN templates featured different open window ratios were used to understand the growth mechanisms and establish epitaxial parameters. These preliminary tasks are helpful for structure design of devices and growth condition control. In addition to the studies of SAG techniques, Ohmic contact characteristics of metals onto the GaN template substrates after removing SiO2 mask layers is also discussed. Commercial GaN-based LEDs are grown on insulating sapphire substrate. The device fabrication needs a dry etching procedure to define the active region of devices. The SAG technique leaves out the dry etching procedure. The selectively grown GaN-based LEDs with obliquely self-assembled facets improve the probability of photons to escape from semiconductors to air. Furthermore, a concave top surface was observed in a GaN-based LED when the epitaxial growth was performed by the aforesaid SAG technique. The concave top surface is beneficial to current spreading compared with those GaN/sapphire-based LEDs with planar top surface. For AlGaN-based p-i-n UV PD applications, the AlGaN heteroepitaxial layers grown on GaN template substrates with SiO2 mask layers (i.e., SAG technique) could have an effect that cracks in the AlGaN epitaxial layers could be markedly decreased compared with AlGaN epitaxial layers grown on conventional GaN template substrates. To further improve the responsivity of a conventional ultraviolet p-i-n photodiode, a wide bandgap and low-resisitivity p-type AlGaN top contact layer is necessary. In this study, an inverted AlGaN-based p-i-n photodiode, which the low-resistivity n-type AlGaN was served as the top contact layer and the anode electrode was directly formed on the bottom p-GaN template layer, was performed by the SAG technique. All selectively grown AlGaN-based p-i-n photodiodes exhibit typical UV-to-visible spectral rejection ratio over three orders of magnitude. The inverted type of p-i-n UV PDs can have greater potential in achieving solar-blind AlGaN/GaN-based p-i-n PDs with high aluminum content. This is because the top window layer will be an n-type AlGaN layer rather than a high resistivity p-type layer.

    摘要 I Abstract II Contents IV Table Captions VI Figure Captions VII CHAPTER 1 Introduction 1 1.1 Group III-Nitride Compound Semiconductors: Properties & Applications 1 1.2 Background of Group III-Nitride Semiconductors 5 References in chapter 1 11 CHAPTER 2 Metalorganic Vapor Phase Epitaxy System 19 2.1 Introduction 19 2.2 MOVPE System 22 2.3 In-situ Monitoring of Growth Technology 23 References in chapter 2 28 CHAPTER 3 Selective Growth of GaN and AlxGa1-xN on GaN Template Substrates by Metalorganic Vapor Phase Epitaxy 30 3.1 Introduction 30 3.2 Growth and Characterization of GaN Grown by Selective MOVPE 31 3.3 Growth and Characterization of AlxGa1-xN Grown by Selective MOVPE 51 References in chapter 3 58 CHAPTER 4 Effects of Thermal Annealing on Si-Doped GaN and Mg-Doped GaN Epilayers with SiO2 Passivation Layers 62 4.1 Introduction 62 4.2 Study of Cr/Au Contacts on MOVPE-annealed N-type GaN Epilayers 64 4.3 Study of Ni/Au Contacts on MOVPE-annealed P-type GaN Epilayers 69 References in chapter 4 75 CHAPTER 5 GaN-based Light Emitting Diodes Grown by Selective Metalorganic Vapor Phase Epitaxy 77 5.1 Introduction 77 5.2 Growth and fabrication of selectively grown GaN-based LEDs 79 5.3 Characterization of selectively grown GaN-based LEDs 80 5.4 Power chip of Selectively Grown GaN-based LEDs 91 References in chapter 5 96 CHAPTER 6 AlGaN/GaN-Based Ultraviolet p-i-n Photodiodes 99 6.1 Introduction 99 6.2 Selective growth of Al0.25Ga0.75N/GaN Ultraviolet p-i-n Photodiodes 103 6.3 Inverted Al0.25Ga0.75N/GaN Ultraviolet p-i-n Photodiodes Formed on p-GaN Template Layer 112 6.4 Comparison of GaN-Based Ultraviolet p-i-n Photodiodes with Top p-Layer and Inverted p-Layer Structure 121 6.5 Inverted Al0.45Ga0.55N/GaN Solar-Blind p-i-n Photodiodes Formed on p-GaN Template Substrate 130 References in chapter 6 140 CHAPTER 7 Conclusions and Future Works 145 7.1 Conclusions 145 7.2 Future Works 147 Publication List 148 Appendix Characterization of Gallium-doped Zinc Oxide Contact on n-type Gallium Nitride Epilayers and Application to Ultraviolet Photodectector 150 References in appendix 175

    References in chapter 1
    [1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, no. 21, pp. 3967-3969, 2002.
    [2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett., vol. 80, no. 25, pp. 4741-4743, 2002.
    [3] M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions”, Appl. Phys. Lett., vol. 60, no. 24, pp. 3027-3029, 1992.
    [4] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Olson, “Metal semiconductor field effect transistor based on single crystal GaN,” Applied Physics Letters., vol. 62, no. 15, pp. 1786–1787, 1993.
    [5] J. B. Limb, H. Xing, B. Moran, L. McCarthy, S. P. DenBaars, and U. K. Mishra, “High voltage operation (>80 V) of GaN bipolar junction transistors with low leakage,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2457-2459, 2000.
    [6] L. S. McCarthy, P. Kozodoy, M. J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “AlGaN/GaN heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 20, no. 6, pp. 277–279, 1999.
    [7] W. C Johnson, J. B. Parsons, and M. C. Crew, J. Phys. Chem., vol. 234, pp. 2651, 1932.
    [8] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem. Chem., vol. 234, pp. 282, 1938.
    [9] H. Grimmeiss and H. Koelmans, Z. Naturfg. 14a, 264 (1959).
    [10] H. P. Marusk and J. J. Tietjen, Appl. Phys. Lett., vol. 15, pp. 367, 1969.
    [11] J. I. Pankove, S. Bloom, and G. Harbeke, “Optical properties of GaN,” RCA Rev., vol. 36, pp. 163, 1975.
    [12] W. Seifert, R. Franzheld, E. Butter, H. Sobotta, and V. Riede, “On the origin of free carriers in high-conducting n-GaN,” Crystal Res. Technol., vol. 18, no. 3, pp. 383-390, 1983.
    [13] H. Manasevi, F. M. Erdmann, and W. I. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials,” J. Electrochem. Soc., vol. 118, no. 11, pp. 1864-1868, 1971.
    [14] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN blue light-emitting diodes,” J. Luminescence, vol. 5, no. 1, pp. 84-86, 1972.
    [15] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, no. 10, pp. 353-355, 1986.
    [16] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Jpn. J. Appl. Phys., vol. 30, no. 10A, pp. L1705–L1707, 1991.
    [17] D. Wickenden, T. Kistenmacher, W. Bryden, J. Morgan, and A. Estes Wickenden, Heteroepitaxy of Dissimilar Materials Symposium, pp.167–172, 1991.
    [18] H. Amano, I. Akasaki, T. Kozowa, K. Hiramatsu, N. Sawak, K. Ikeda, and Y. Ishii, “Electron beam effects on blue luminescence of zinc-doped GaN,” J. Luminescence, vol. 40, pp. 121-122, 1988.
    [19] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation,” Jpn. J. Appl. Phys., vol. 28, no. 12, pp. L2112-L2114, 1989.
    [20] I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, “Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED,” J. Luminescence, vol. 48, no. 2, pp. 666-670, 1990.
    [21] S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films,” Jpn. J. Appl. Phys., vol. 31, no. 5A, pp. 1258-1266, 1992.
    [22] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687–1689, 1994.
    [23] T. Lei, M. Fanciulli, R.J. Molnar, T.D. Moustakas, R.J. Graham, and J. Scanlon, “Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon,” Appl. Phys. Lett., vol. 59, no. 8, pp. 944-946, 1991.
    [24] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer,” J. Cryst. Growth, vol. 128, no. 1, pp. 391-396, 1993.
    [25] P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Ferguson, and M. Razeghi, “High quality AIN and GaN epilayers grown on (00-1) sapphire, (100) and (111) silicon substrates,” Appl. Phys. Lett., vol. 66, no.22, pp. 2958-2960, 1995.
    [26] E. S. Hellman, Z. L. Weber, and D. Buchanan, “EPITAXIAL GROWTH AND ORIENTATION OF GaN ON (100) GAMMA-LiAlO2,” MRS Internet J.Nitride Semicond.Res., vol. 2, pp. 30, 1997.
    [27] X. Ke, X. Jun, D. Peizhen, Z. Yongzong, Z. Guoqing, Q. Rongsheng, and F. Zujie, “ -LiAlO2 single crystal: a novel substrate for GaN epitaxy,” J. Cryst. Growth, vol. 193, no. 1-2, pp. 127-132, 1998.
    [28] P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razaghi, “Metalorganic chemical vapor deposition of monocrystalline GaN thin films on β‐LiGaO2 substrates,” Appl. Phys. Lett., vol. 69, no. 14, pp. 6116-6118, 1996.
    [29] F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, David J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel, and P. Hemenger, “Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy,” Appl. Phys. Lett., vol. 70, no.4, pp. 467-469, 1997.
    [30] X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc¸B. Nemeth, J. Nause, “GaN epitaxy on thermally treated c-plane bulk ZnO substrates with O and Zn faces,” Appl. Phys. Lett., vol. 84, no. 13, pp. 2268-2270, 2004.
    [31] Bernard Gil, “Group III nitride Semiconductor Compounds”, Clarendon Press, Oxford, pp. 33, 1998.
    [32] S. D. Lester, F. A. Ponce, M. G. Graford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes”, Appl. Phys. Lett., vol. 66, no. 10, pp. 1249-1251, 1995.
    [33] T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial Lateral Overgrowth of GaAs by LPE,” Jpn. J. Appl. Phys., vol. 27, no.6, pp. L964-L967, 1988.
    [34] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth, vol. 144, no. 3-4, pp. 133-140, 1994.
    [35] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN,” Jpn. J. Appl. Phys., vol. 37, no. 3B, L316-L318, 1998.
    [36] H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 73, no. 6, pp. 747-749, 1998.
    [37] Akira Sakai, Haruo Sunakawa, and Akira Usui, “Transmission electron microscopy of defects in GaN films formed by epitaxial lateral overgrowth”, Appl. Phys. Lett., vol. 73, no. 4, pp. 481-483, 1998.
    [38] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., vol. 72, no. 2, pp. 211-213, 1998.
    [39] T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, “Optical investigation of InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 74, no. 21, pp. 3128-3130, 1999.
    [40] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, C. C. Yanga, C. C. Chou, C. M. Lee, and J. I. Chyi, “Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 77, no. 19, pp. 2988-2990, 2000.
    [41] P. Lefebvre, A. Morel, M. Gallart, T. Taliercio, J. Allègre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean and J. Massies, “High internal electric field in a graded-width InGaN/GaN quantum well: Accurate determination by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett., vol. 78, no. 9, pp. 1252-1254, 2001.
    [42] J. C. Harris, H. Brisset, Takao Someya, and Yasuhiko Arakawa, “Growth Condition Dependence of the Photoluminescence Properties of InxGa1-xN/InyGa1-yN Multiple Quantum Wells Grown by MOCVD,” Jpn. J. Appl. Phys., vol. 38, no. 4B, pp. 2613-2616, 1999.
    [43] S. Keller, B. P. Keller, D. Kapolnek, U. K. Mishra, S. P. DenBaars, I. K. Shmagin,R. M. Kolbas, and S. Krishnankutty, “Growth of bulk InGaN films and quantum wells by atmospheric pressure metalorganic chemical vapour deposition,” J. Crystal Growth, vol. 170, no. 1-4, pp. 349-352, 1997.
    [44] E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S.Boutros, and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett., vol. 70, no. 4, pp. 461-463, 1997.
    [45] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, no. 2B, pp. L139-L142, 1991.
    [46] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p‐type conduction in Mg‐doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 65, no. 5, pp. 593-594, 1994.
    [47] W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg‐doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 68, no. 5, pp. 667-669, 1996.
    [48] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, no. 8, pp. 4491-4497, 1999.
    [49] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2340-2342, 1999.
    [50] J. L. Lee, M. Weber, J. K. Kim, J. W. Lee, Y. J. Park, T. Kim, and K. Lynn, “Ohmic contact formation mechanism of nonalloyed Pd contacts to p-type GaN observed by positron annihilation spectroscopy,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2289-2291, 1999.
    [51] J. S. Jang, S. J. Park, and T. Y. Seong, “Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment,” J. Vac. Sci. Technol. B, vol. 17, no. 6, pp. 2667-2670, 1999.
    [52] J. O. Song, J. S. Kwak, and Y. Park, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 86, pp. 062104-1-3, 2005.
    [53] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2953-5955, 1998.
    [54] D. J. King, L. Zhang, J. C. Ramer, S. D. Hersee, and L. F. Lester, “Temperature Behavior of Pt/Au Ohmic Contacts to p-GaN,” Mater. Res. Soc. Symp. Proc., 468, pp. 421, 1997.
    [55] H. W. Jang and J. L. Lee, “Mechanism for ohmic contact formation of Ni∕Ag contacts on p-type GaN,” Appl. Phys. Lett., vol. 85, no. 24, pp. 5920-5922, 2004.
    [56] M. Suzuki, T. Kawakami, T. Arai, S. Kobayashi, Y. Koide, T. Uemura, N. Shibata, and M. Murakami, “Low-resistance Ta/Ti Ohmic contacts for p-type GaN,” Appl. Phys. Lett., vol. 74, no. 2, pp. 275-277, 1999.
    [57] J. S. Jang, I. S. Chang, H. K Kim, T. Y. Seong, S. Lee, and S. J. Park, “Low-resistance Pt/Ni/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 1, pp. 70-72, 1999.
    [58] L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang and A. Khan, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN,” Appl. Phys. Lett., vol. 76, no. 23, pp. 3451-3453, 2000.
    [59] V. Adivarahan, A. Lunev, M. Asif Khan, J. Yang, G. Simin, M. S. Shur and R. Gaska, “Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices,” Appl. Phys. Lett., vol. 78, no. 18, pp. 2781-2783, 2001.

    References in chapter 2
    [1] H. Manasevi, F. M. Erdmann, and W. I. Simpson, “The Use of Metalorganics in the Preparation of Semiconductor Materials,” J. Electrochem. Soc., vol. 118, no. 11, pp. 1864-1868, 1971.
    [2] H.M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates,” J. Cryst. Growth, vol. 13-14, pp. 306-614, 1972.
    [3] I. Akasaki, H. Amano, K. Iitoh, H. Sakai, T. Tanaka, and K. Manaba, Inst. Phys. Conf. Ser., vol. 129, pp. 851, 1992.
    [4] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, 1994.
    [5] S. P. DenBaar, B. Y. Maa, P. D. Dapkus, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD,” J. Cryst. Growth, vol. 77, no. 1-3, pp. 188-193, 1986.
    [6] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory, and Practice", Academic Press, Inc., San Diego, 1989.
    [7] S. Nakamura, Y. Harada, and M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth,” Appl. Phys. Lett., vol, 58, no. 18, pp. 2021-2023, 1991.
    [8] S. Nakamura, “Analysis of Real-Time Monitoring Using Interference Effects,” Jpn. J. Appl. Phys., vol. 30, no.7, pp. 1348-1353, 1991.
    [9] H. Amano, I. Akasak, K. Hiramatsu, and N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate,” Thin Solid Film, vol. 163, pp. 415-420, 1988.

    References in chapter 3
    [1] M. Nagahara, S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki, and R. Ito, “Selective Growth of Cubic GaN in Small Areas on Patterned GaAs(100) Substrates by Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 33, no. 1B, pp. 694-697, 1993.
    [2] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy”, J. Cryst. Growth, vol. 144, no. 3-4, pp. 133-140, 1994.
    [3] S. Kitamura, K. Hiramatsu, and N. Sawaki, “Fabrication of GaN Hexagonal Pyramids on Dot-Patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 34, no. 9B, pp. Ll184-L1186, 1995.
    [4] R. D. Underwood, D. Kapolnek, B. P. Keller, S. Keller, S. P. DenBaars, and U. K. Mishra, “Selective-area regrowth of GaN field emission tips,” Solid State Electron., vol. 41, no. 2, pp. 243-245, 1997.
    [5] T. Tanaka, K. Uchida, A. Watanabe, and S. Minagawa, “Selective growth of gallium nitride layers with a rectangular cross‐sectional shape and stimulated emission from the optical waveguides observed by photopumping,” Appl. Phys. Lett., vol. 68, no. 7, pp. 976-978, 1996.
    [6] T. Akasaka, Y. Kobayashi, S. Ando, and N. Kobayashi, “GaN hexagonal microprisms with smooth vertical facets fabricated by selective metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 71, no. 15, pp. 2196-2198, 1997.
    [7] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Appl. Phys. Lett., vol. 71, no. 17, pp. 2472-2474, 1997.
    [8] A. Usui, H. Sunakawa, A. Sakai, and A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy,” Jpn. J. Appl. Phys., vol. 36, no. 7B, pp. L899-L902, 1997.
    [9] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, andT. Maeda, “Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth,” Phys. Stat. Sol. A, vol. 176, no.1, pp. 535-543, 1999.
    [10] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., vol. 72, no. 2, pp. 211-213, 1998.
    [11] B. Beaumont, Ph. Vennéguès, and P. Gibart, “Epitaxial Lateral Overgrowth of GaN,” phys. stat. sol. (b), vol. 227, no. 1, pp. 1-43, 2001.
    [12] X. Li, A. M. Jones, S. D. Roh, D. A. TurnbullU, S. G. Bishop, and J. J. Coleman, “Characteristics of GaN Stripes Grown by Selective-Area Metalorganic Chemical Vapor Deposition,” J. Electron. Mater., vol. 26, no. 3, pp. 306-310, 1997.
    [13] S. Heikman, S. P. DenBaars, and U. K. Mishra, “Selective area mass transport regrowth of gallium nitride,” Jpn. J. Appl. Phys., vol. 40, no. 2A, pp. 565-566, 2001.
    [14] S. Heikman, S. Keller, S. P. Denbaars, U. K. Mishra, F. Bertram and J. Christen, “Non-planar Selective Area Growth and Characterization of GaN and AlGaN”, Jpn. J. Appl. Phys., vol. 42, no. 10, pp. 6276-6283, 2003.
    [15] C. H. Chen, S. Keller, G. Parish, R. Vetury, P. Kozodoy, E. L. Hu, S. P. DenBaars, and U. K. Mishra, “High-transconductance self-aligned AlGaN/GaN modulation-doped field-effect transistors with regrown ohmic contacts” Appl. Phys. Lett., vol. 73, no. 21, pp. 3147-3149, 1998.
    [16] S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Mass transport regrowthof GaN for ohmic contacts to AlGaN/GaN”, Applied Physics Letters, vol. 78, no. 19, p. 2876-2878, 2001
    [17] B. S. Shelton, D. J. H. Lambert, J. J. Huang; M. M. Wong, U. Chowdhury, G. Z. Ting , H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, R. D. Dupuis, “Selective area growth and characterization of AlGaN/GaN heterojunction bipolar transistors by metalorganic chemical vapor deposition”, IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 490-493, 2001.
    [18] T. Asano, K. Yanashima, T. Asatsuma, T. Hino, T. Yamaguchi, S. Tomiya, K. Funato, T. Kobayashi, and M. Ikeda, “CW Operation of AlGaInN-GaN Laser Diodes” Phys. Stat. Sol. (a), vol. 176, no. 1, pp. 23-30, 1999.
    [19] M. Yang, M. Cho, C. Kim, J. Yi, J. Jeon, S. Khym, M. Kim, Y. Choi, S. J. Leem, and Y. H. Lee, “A selective growth of III-nitride by MOCVD for a buried-ridge type structure”, J. Crystal Growth, vol. 226, no. 1, pp. 73-78, 2001.
    [20] S. Ando, T. Honda and N. Kobayashi, “Self-Limited Facet Growth for GaAs Tetrahedral Quantum Dots”, Jpn. J. Appl. Phys., vol. 32, no. 1A/B, pp. L104-L106, 1993.
    [21] Y.-F. Wu, D. Kapolnek, P. Kozodoy, B. Thibeault, S. Keller, B. Keller, S. Denbaars, and U. Mishra, IEEE Twenty-Fourth International Symposium on Compound Semiconductors (IEEE, New York, 1998), pp. 431, 1998.
    [22] L. Buydens, P. Demeester, M. Van Ackere, A. Ackaert, and P. Van Daele, “Thickness Variations during MOVPE Growth on Patterned Substrates,” J. Electron. Mater., vol. 19, no. 4, pp. 317-321, 1990.
    [23] D. Marx, Z. Kawazu, T. Nakayama, Y. Mihashi, T. Takami, M. Nunoshita, and T. Ozeki, “Selective area growth of GaN/AlN heterostructures,” J. Cryst. Growth, vol. 189, pp. 87-91, 1998.
    [24] K. Kiruma, T. Haga, and M. Miyazaki, “Surface migration and reaction mechanism during selective growth of GaAs and AlAs by metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 102, no. 4, pp. 717-724, 1990.
    [25] O.-H. Nam, T.S. Zheleva, M.D. Bremser, and R.F. Davis, “Lateral Epitaxial Overgrowth of GaN Films on SiO2 Areas,” J. Electron. Mater., vol. 27, no.4, pp. 233-237, 1998.

    References in chapter 4
    [1] P. Hacke, T. Detchprohm, K. Hiramatsu, and N. Sawaki, “Schottky barrier on n‐type GaN grown by hydride vapor phase epitaxy,” Appl. Phys. Lett., vol. 63, no. 19, pp. 2676-2678, 1993.
    [2] M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen, and H. MorkocË, “Low resistance ohmic contacts on wide band‐gap GaN,” Appl. Phys. Lett., vol. 64, no. 8, pp. 1003-1005, 1994.
    [3] Z. Fan, S. N. Mohammed, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer Ohmic contact to n‐GaN,” Appl. Phys. Lett., vol. 68, no. 12, pp. 1672-1674, 1996.
    [4] S. Ruvimov, Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev, and H. Morkoc, “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n‐GaN,” Appl. Phys. Lett., vol. 69, no. 11, pp. 1556-1558, 1996.
    [5] L. F. Lester, J. M. Brown, J. C. Ramer, L. Zhang, S. D. Hersee, and J. C. Zolper, “Nonalloyed Ti/Al Ohmic contacts to n‐type GaN using high‐temperature premetallization anneal,” Appl. Phys. Lett., vol. 69, no. 18, pp. 2737-2739, 1996.
    [6] D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammada, K. A. Jones, and L. Salamanca-Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., vol. 89, no. 11, pp. 6214-6217, 2001.
    [7] M. L. Lee, J. K. Sheu, and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett., vol. 91, no. 18, pp. 182106-1-3, 2007.
    [8] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, no. 2B, L139-L142, 1991.
    [9] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p‐type conduction in Mg‐doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 65, no. 5, pp. 593-594, 1994.
    [10] W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg‐doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 68, no. 5, pp. 667-669, 1996.
    [11] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, no. 7, pp. 3826-3832, 1999.
    [12] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 74, no. 16, pp. 2340-2342, 1999.

    References in chapter 5
    [1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., vol. 34, no. 10B, pp. L1332–L1335, 1995.
    [2] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based, light-emitting diode by micro-roughening of the p-GaN surface,” J. Appl. Phys., vol. 93, no. 11, pp. 9383-9385, 2003.
    [3] C. C. Yang, R. H. Horng, C. E. Lee, W. Y. Lin, K. F. Pan, Y. Y. Su, and D. S. Wuu, “Improvement in extraction efficiency of GaN-based light-emitting diodes with textured surface layer by natural lithography,” Jpn. J. Appl. Phys., vol. 44, no. 4B, pp. 2525-2527, 2005.
    [4] C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C.W.Kuo, S. J. Chang, and Y. K. Su, “Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Electron Device Lett., vol. 26, no. 7, pp. 464-466, 2005.
    [5] J. K. Sheu, C.M.Tsai, M. L. Lee, S.C.Shei, and W.C.Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, no. 11, pp. 113505-1-3, 2006.
    [6] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalor-ganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, no. 6B, pp. L583-L585, 2001.
    [7] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, no. 12B, pp. L1431-L1433, 2002.
    [8] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, no. 16, pp. 2365-2367, 1999.
    [9] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plössl, F. Kühn, H. Zull, M. Winter, and V. Härle, “InGaN on SiC LEDs for high flux and high current applications,” phys. stat. sol. (a), vol. 194, no. 2, pp. 399-402, 2002.
    [10] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side-walls,” IEEE Photon. Technol. Lett., vol. 16, no. 3, pp. 750-752, 2004.
    [11] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22 undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 19-21, 2005.
    [12] J.-S. Lee, J. Lee, S. Kim, and H. Jeon, “GaN Light-Emitting Diode with Deep-Angled Mesa Sidewalls for Enhanced Light Emission in the Surface-Normal Direction,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 523-526, 2008.
    [13] D. S. Kuo, S. J. Chang, T. K. Ko, C. F. Shen, S. J. Hon, and S. C. Hung, “Nitride-based LEDs with phosphoric acid etched undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 21, no. 8, pp. 510-512, 2009.
    [14] J. F. Muth, J. D. Brown, M. A. L. Johnson, Z. Yu, R. M. Kolbas, J. W. Cook, Jr., and J. F. Schetzina, “Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys,” MRS Internet J. Nitride Semicond. Res., 4S1, 1999.
    [15] T M. Chen, S. J. Wang, K. M. Uang, S. L. Chen, W. C. Tsai, W. C. Lee, and C. C. Tsai, “ Use of anisotropic laser etching to the top n-GaN layer to alleviate current-crowding effect in vertical-structured GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 90, no. 4, pp. 041115-1-3, 2007.

    References in chapter 6
    [1] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, no. 10, pp. 7433–7473, 1996.
    [2] D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, “AlGaN ultraviolet photoconductors grown on sapphire,” Appl. Phys. Lett., vol. 68, no. 15, pp. 2100–2101, 1996.
    [3] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible–blind ultraviolet detection, ” Appl. Phys. Lett., vol. 70, no. 17, pp. 2277-2279, 1997.
    [4] A. Osinsky, S. Gangopadhyay, B. W. Lim, M. Z. Anwar, M. A. Khan, D. V. Kuksenkov, and H. Temkin, “Schottky barrier photodetectors based on AlGaN,” Appl. Phys. Lett., vol. 72, no. 6, pp. 742-744, 1998.
    [5] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, no. 5, pp. 762–764, 1999.
    [6] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett., vol. 71, no. 16, pp. 2334-2336, 1997.
    [7] P. Kung, X. Zhang, D. Walker, A. Saxler, and M. Razeghi, “GaN p-i-n photodiodes with high visible-to-ultraviolet rejection ratio,” Proc. SPIE, vol. 3287, pp. 214–220, 1998.
    [8] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez, and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes,” Appl. Phys. Lett., vol. 74, no. 8, pp. 1171–1173, 1999.
    [9] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, and S. Verghese, “GaN avalanche photodiodes grown by hydride vapor-phase epitaxy,” Appl. Phys. Lett., vol. 75, no. 22, pp. 3485-3487, 1999.
    [10] J. C. Carrano, D. J. H. Lambert, C. J. Eiting, C. J. Collins, T. Li, S. Wang, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “GaN avalanche photodiodes,” Appl. Phys. Lett., vol. 76, no. 7, pp. 924-926, 2000.
    [11] W. G. Perry, M. B. Bremser, T. Zheleva, K. J. Linthicum, and R. F. Davis, “Biaxial strain in AlxGa1−xN/GaN layers deposited on 6H-SiC,” Thin Solid Films, vol. 324, no. 1-2, pp. 107-114, 1998.
    [12] J. W. Matthews and E. Klokholm, “Fracture of brittle epitaxial films under the influence of misfit stress,” Mater. Res. Bull., vol. 7, no. 213-221, 1972.
    [13] J. Qu, J. Li, and G. Zhang, “AlGaN-GaN heterostructure grown by metalorganic vapor phase epitaxy,” Solid State Commun., vol. 107, no. 9, pp. 467-470, 1998.
    [14] H. Amano, M. Iwaya, N. Hayashi, T. Kashima, S. Nitta, C. Wetzel, and I. Akasaki, “Control of Dislocations and Stress in AlGaN on Sapphire Using a Low Temperature Interlayer,” phys. stat. sol. (b), vol. 216, no. 1, pp. 683-689, 1999.
    [15] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amano, I. Akasaki, S. Watanabe, Y. Kaneko, and N. Yamad, “Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure,” J. Cryst. Growth, vol. 223, no. 1-2, pp. 83-91, 2001.
    [16] J. P. Zhang, H. M. Wang, M. E. Gaevski, C. Q. Chen, Q. Fareed, J. W. Yang, G. Simin, and M. Asif Khan, “Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management,” Appl. Phys. Lett., vol. 80, no. 19, pp. 3542-3544, 2002.
    [17] J.-M. Bethoux, P. Vennéguès, F. Natali, E. Feltin, O. Tottereau, G. Nataf, P. De Mierry, and F. Semond, “Growth of high quality crack-free AlGaN films on GaN templates using plastic relaxation through buried cracks,” J. Appl. Phys., vol., vol. 94, no. 10, pp. 6499-6507, 2003.
    [18] D. Marx, Z. Kawazu, T. Nakayama, Y. Mihashi, T. Takami, M. Nunoshita, and T. Ozeki, “Selective area growth of GaN/AlN heterostructures,” J. Cryst. Growth, vol. 189, pp. 87-91, 1998.
    [19] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN‐based light‐emitting diodes,” Appl. Phys. Lett., vol. 66, no. 10, pp. 1249-1251, 1995.
    [20] D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett., vol. 67, no. 11, pp. 1541-1543, 1995.
    [21] T. Li, J. C. Carrano, J. C. Campbell, M. Schurman, and I. Ferguson, “Analysis of external quantum efficiencies of GaN homojunction p-i-n ultraviolet photodetectors,” IEEE J. Quantum Electron., vol. 35, no. 8, pp. 1203-1206, 1999.
    [22] S. Donati, Photodetectors: Devices, Circuits, and Applications, Prentice–Hall, NJ, 2000.
    [23] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck,R. D. Dupuis, and J. C. Campbell, “Improved solar-blind detectivity using an AlxGa1−xN heterojunction p–i–n photodiode,” Appl. Phys. Lett., vol. 80, no. 20, pp. 3754-3757, 2002.
    [24] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Jpn. J. Appl. Phys., vol. 31, no. 2B, L139-L142, 1991.
    [25] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “p‐type conduction in Mg‐doped GaN and Al0.08Ga0.92N grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 65, no. 5, pp. 593-594, 1994.
    [26] L. C. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN,” J. Appl. Phys., vol. 86, pp. 3826-3832, 1999.
    [27] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, “High-transparency Ni/Au ohmic contact to p-type GaN,” Appl. Phys. Lett., vol. 74, pp. 2340-2342, 1999.
    [28] M. Suzuki, J. Nishio, M. Onomura, and C. Hongo, “Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD,”J. Cryst. Growth, vol. 189, pp. 511-515, 1998.
    [29] W Yang, T Nohova, S Krishnankutty, R Torreano, S. McPherson, and H. Marsh, “Back-illuminated GaN/AlGaN heterojunction photodiodes with high quantum efficiency and low noise,” Appl. Phys. Lett., vol. 73, no. 8, pp. 1086-1088, 1998.
    [30] J. K. Sheu, M. L. Lee, and W. C. Lai, “Aluminum gallium nitride ultraviolet photodiodes with buried p-layer structure,” Appl. Phys. Lett., vol. 87, no. 4, pp. 043501-1-3, 2005.
    [31] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70N p–i–n photodiodes,” Appl. Phys. Lett., vol. 77, no. 18, pp. 2810-2812, 2000.
    [32] J. K. Sheu and G. C. Chi, “The doping process and dopant characteristics of GaN,” J. Phys.: Condens. Matter., vol. 14, no. 22, pp. R657-R702, 2002.
    [33] K. H. Chang, J. K. Sheu, M. L. Lee, S. J. Tu,C. C. Yang, H. S. Kuo, J. H. Yang, and W. C. Lai, “Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.
    [34] A. P. Parker, The mechanics of fracture and fatigue: an introduction E&E N. Soon Ltd, London, 1981.

    References in appendix
    [1] T. Minami, H. Nanto, and S. Takata, “Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field,” no. 10, Appl. Phys. Lett., vol. 41, pp. 958-960, 1982.
    [2] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett., vol. 90, no. 26, pp. 263511-1-3, 2007.
    [3] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices,” Appl. Phys. Lett., vol. 83, no. 9, pp. 1875-1877, 2003.
    [4] H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo, “Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode,” Appl. Phys. Lett., vol. 91, no. 22, pp. 223501-1-3, 2007.
    [5] C. J. Tun, J. K. Sheu, M. L. Lee, C. C. Hu, C. K. Hsieh, and G. C. Chi, “Effects of Thermal Annealing on Al-Doped ZnO Films Deposited on p-Type Gallium Nitride,” J. Electrochem. Soc., vol. 153, no. 4, pp. G296-G298, 2006.
    [6] J. A. Aranovich, D. G. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis,” J. Appl. Phys., vol. 51, no. 9, pp. 4260-4268, 1980.
    [7] K. Shiojima, T. Sugahara, and S. Sakai, “Large Schottky barriers for Ni/p-GaN contacts,” Appl. Phys. Lett., no. 14, vol. 74, pp. 1936-1938, 1999.
    [8] J. K. Sheu, K. H. Chang, and M. L. Lee, “Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN,” Appl. Phys. Lett., vol. 92, no. 11, pp. 113512-1-3, 2008.
    [9] D. C. Oh, T. Suzuki, H. Makino, T. Hanada, H. J. Ko, and T. Yao, “Electrical properties of ZnO/GaN heterostructures and photoresponsivity of ZnO layers,” Phys. Status Solidi (c), vol. 3, no. 4, pp. 946-951, 2006.
    [10] M. L. Lee, J. K. Sheu, and C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett., vol. 91, no. 18, pp. 182106-1-3, 2007.
    [11] N. Gopalakrishnan, B. C. Shin, H. S. Lim, T. Balasubramanian, and Y. S. Yu, “Codoping in ZnO using GaN by pulsed laser deposition,” J. Cryst. Growth, vol. 294, no. 2, pp. 273-277, 2006.
    [12] S. Kim, J. Jeon, H. W. Kim, J. G. Lee, and C. Lee, “Influence of substrate temperature and oxygen/argon flow ratio on the electrical and optical properties of Ga-doped ZnO thin films prepared by rf magnetron sputtering,” Cryst. Res. Technol., vol. 41, no. 12, pp. 1194, 2006.
    [13] J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun, and G. C. Chic, “Effect of Thermal Annealing on Ga-Doped ZnO Films Prepared by Magnetron Sputtering,” J. Electrochem. Soc., vol. 154, no. 6, pp. H521-H524, 2007.
    [14] H. Moormann, D. Kohl, and G. Heiland, “Variations of work function and surface conductivity on clean cleaved zinc oxide surfaces by annealing and by hydrogen adsorption,” Surf. Sci., vol. 100, no. 2, pp. 302-314, 1980.
    [15] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN,” Appl. Phys. Lett., vol. 72, no. 25, pp. 3317-3319, 1998.
    [16] M. L. Lee, J. K. Sheu, and S. W. Lin, “Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer,” Appl. Phys. Lett., vol. 88, no. 3, pp. 032103-1-3, 2006.
    [17] M. Futsuhara, K. Yoshioka, and O. Takai, “Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering,” Thin Solid Films, vol. 322, no. 1-2, pp. 274-281, 1998.
    [18] K. Kuriyama, Y. Takahashi, and F. Sunohara, “Optical band gap of Zn3N2 films,” Phys. Rev. B, vol. 48, no. 4, pp. 2781-2782, 1993.
    [19] J. K. Sheu, S. S. Chen, M. L. Lee, W. C. Lai, W. H. Chang, and G. C. Chi, “Effects of Thermal Annealing on Si-Implanted GaN Films Grown at Low Temperature by Metallorganic Vapor Phase,” J. Electrochem. Soc., vol. 152, no. 11, pp. G813-G815, 2005.
    [20] J. K. Sheu, M. L. Lee, and W. C. Lai, “Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes,” Appl. Phys. Lett., vol. 86, no. 5, pp. 052103-1-3, 2005.
    [21] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, J. M. Tsai, and G. C. Chi, “Characterization of GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” J. Appl. Phys., vol. 94, no. 3, pp. 1753-1757, 2003.
    [22] T. Li, J. C. Carrano, J. C. Campbell, M. Schurman, and I. Ferguson, “Analysis of external quantum efficiencies of GaN homojunction p-i-n ultraviolet photodetectors,” IEEE J. Quantum Electron., vol. 35, no. 8, pp. 1203-1206, 1999.
    [23] J. K. Sheu, K. H. Chang, M. L. Lee, J. F. Huang, K. S. Kang, W. L. Wang, W. C. Lai and T. H. Hsueh,” Characterization of gallium-doped zinc oxide contact on n-type gallium nitride epitaxial layers,” Journal of the Electrochemical Society, vol. 156, no. 8, p.p. H679-H683, 2009.
    [24] J. K. Sheu, K. H. Chang, and M. L. Lee, “Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN,” Applied Physics Letter, vol. 92, no. 11, pp. 113512-1-3, 2008.

    無法下載圖示 校內:2015-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE