簡易檢索 / 詳目顯示

研究生: 張恆愛
Chang, Heng-Ai
論文名稱: 缺氧下腎臟上皮細胞中HIF-1α所誘導的YAP核轉移可減輕DNA損傷及細胞凋亡
HIF-1α-induced YAP nuclear entry mitigates DNA damage and apoptosis under hypoxia in renal epithelial cells
指導教授: 邱文泰
Chiu, Wen-Tai
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 120
中文關鍵詞: 缺氧缺氧誘導因子YAPDNA 損傷細胞凋亡急性腎損傷
外文關鍵詞: Hypoxia, HIF-1α, YAP,, DNA damage, apoptosis, acute kidney injury
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從急性腎損傷不完全的康復是後續發展出纖維化及慢性腎臟病的高風險因子,並且目前對於慢性腎臟病的有效治療方法非常有限。在缺血-再灌流損傷誘導的急性腎臟病中,缺氧被視為是主要的誘發因素,因此探討缺氧誘導因子在腎臟修復中所扮演的角色是格外重要。Yes-associated protein (YAP)是Hippo pathway 中主要的轉錄因子,其調控了細胞生長、器官修復和抑制細胞凋亡。YAP 在細胞核和細胞質間的分布情況,對於其轉錄活性的平衡有重要影響。一般而言,高密度使YAP 停留在細胞質中並抑制其轉錄活性。令人驚訝的是,我們發現高密度下,缺氧可以誘導YAP 進入細胞核,顯示YAP 的核質轉移可以受缺氧所調控並主導YAP 在缺血-再灌流損傷模式中的影響力。我們的目標是揭示缺氧誘導的YAP 核轉移機制和功能。利用缺氧模擬藥物CoCl2,我們模擬缺氧的環境,並進行免疫沉澱和PLA 實驗和來驗證蛋白質之間的交互作用。我們的研究結果顯示在缺氧環境中,高密度下,HIF-1α 可促進YAP 的核轉移。值得注意的是,缺氧環境下,YAP 的核轉移可以保護細胞並對抗DNA 損傷和細胞凋亡。本篇研究是首次驗證缺氧下HIF-1α 本身足以誘導YAP 入核。這些發現顯示YAP 的轉錄活性可作為標靶來促進細胞在缺氧下的修復,提供像是缺氧、缺血、或纖維化等腎臟病一個潛在的療法。

    Inadequate recovery from acute kidney injury (AKI) poses a significant risk of progressing to fibrosis and chronic kidney disease, with limited effective therapies available. Hypoxia serves as a primary trigger for ischemia-reperfusion injury (IRI)-induced AKI, making it crucial to investigate the involvement of hypoxia-inducible factor-1α (HIF-1α) in kidney repair. Yes-associated protein (YAP), a key transcription factor in the Hippo pathway, regulates cell proliferation, organ regeneration, and apoptosis inhibition. YAP's subcellular localization, balancing between the nucleus and cytoplasm, is pivotal for its transcriptional activity. Typically, high cell density inhibits YAP activity, retaining it in the cytoplasm. Surprisingly, our observations reveal YAP nuclear translocation under hypoxic conditions at elevated cell density, indicating that the nucleocytoplasmic shuttling of YAP, modulated by hypoxia, influences its impact on IRI. Our objective is to unravel the mechanism behind hypoxia-induced nuclear translocation of YAP and its implications. Utilizing the hypoxia-mimetic agent CoCl2, we simulated a hypoxia-like environment and conducted immunoprecipitation and proximity ligation assay to validate protein interactions. Our findings demonstrate that HIF-1α actively facilitates the nuclear translocation of YAP at high cell density under hypoxic conditions. Remarkably, YAP's nuclear translocation provides cellular protection against DNA damage and apoptosis in hypoxic settings. Notably, this study is the first to identify that the nuclear entry of HIF-1α alone is sufficient to induce YAP nuclear translocation under hypoxic conditions. These discoveries suggest that targeting YAP activation could be a viable strategy to enhance cell recovery during hypoxic insults, offering potential avenues for the treatment of renal diseases associated with hypoxia, ischemia, and fibrosis.

    中文摘要 I Abstract II 致謝 IV Contents V Chapter 1 Introduction 1 1.1 Kidney functions and oxygenation 1 1.2 The impact of hypoxia on the physiology of renal cells 2 1.3 AKI and Hypoxia 3 1.4 DNA damage and apoptosis 4 1.5 Hypoxia-induced DNA damage and relevant deleterious and repair pathways 6 1.6 Anti-hypoxic behavior and limitations of HIF-1α 8 1.7 YAP as a controversial regulator in cytoprotection 9 1.8 The behavior of YAP under normoxia and hypoxia 10 1.9 The potential interaction of HIF-1a and YAP 11 1.10 Hypothesis 12 Chapter 2 Specific Aims 14 Chapter 3 Material and Methods 16 3.1 Cell culture 16 3.2 Immunofluorescence staining 16 3.3 Lentiviral infection 18 3.4 HIF-1α variants and overexpression through transfection 19 3.5 YAP knockdown and overexpression 19 3.6 RNA extraction and RT-PCR 20 3.7 Annexin V staining 21 3.8 Western blotting 22 3.9 Immunoprecipitation 23 3.10 Proximity Ligation Assay (PLA) 24 3.11 3D cell culture 25 3.12 Other Chemicals and reagents used in the study.25 3.13 Hypoxic conditions 26 3.14 Statistical analysis 26 Chapter 4 Results 27 4.1 Hypoxic conditions increase nuclear localization of YAP in HK-2 cells 27 4.2 Hypoxic conditions increase protein-protein interaction between YAP and HIF-1α within MDCK cells 28 4.3 Genetically-engineered HIF-1α proves to promote YAP nuclear translocation under both normoxia and CoCl2-triggered hypoxia 30 4.4 MDCK-shHIF-1α cells exhibited significantly higher levels of DNA damage and apoptosis than parental cells when exposed to hypoxia 31 4.5 YAP is essential for maintaining DNA integrity and promoting cell survival under hypoxic stress 32 Chapter 5 Discussion 35 5.1 Main findings of this study 35 5.2 Hypoxia-induced suppression of the Hippo pathway at high confluency leads to nuclear YAP abundance 36 5.3 Phosphorylation status of YAP S127 alters its binding partners or in other words protein-to-protein interactions 37 5.4 Hypoxia mediates nuclear shuttling partners that YAP relies on for nuclear-cytoplasmic trafficking 38 5.5 TAZ, the paralogue of YAP, doesn’t compete with YAP for binding to HIF-1α. 41 5.6 Hypoxia predisposes YAP toward nuclear translocation for cytoprotection 43 5.7 Conclusions and future studies 45 References 48 Figures 61 Figures 1 61 Figures 2 63 Figures 3 65 Figures 4 68 Figures 5 70 Figures 6 72 Figures 7 75 Figures 8 77 Figures 9 80 Figures 10 82 Figures 11 84 Figures 12 87 Figures 13 90 Figures 14 92 Table 94 Personal information 95

    1. Uchida S, Endou H. Substrate specificity to maintain cellular ATP along the mouse nephron. Am. J. Physiol. 255, F977–F983 (1988).
    2. Vallon V, Osswald H. Adenosine receptors in health and disease. Handb. Exp. Pharmacol. 193, 443–470 (2009).
    3. Schaub JA, Venkatachalam MA. Weinberg JM. Proximal tubular oxidative metabolism in acute kidney injury and the transition to CKD. Kidney360 2, 355–364 (2020).
    4. Soltoff SP. ATP and the regulation of renal cell function. Annu. Rev. Physiol. 48, 9–31 (1986).
    5. Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).
    6. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α–dependent NF-κB activity. J. Exp. Med. 201, 105–115 (2005).
    7. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature 453, 807–811 (2008).
    8. Basile DP, Anderson MD, Sutton TA. Comprehensive physiology. Compr. Physiol. 2, 1303–1353 (2012).
    9. Noiri E, Nakao A, Uchida K, Tsukahara H, Ohno M, Fujita T, et al. Oxidative and nitrosative stress in acute renal ischemia. Am. J. Physiol. Renal Physiol. 281, F948–F957 (2001).
    10. Bastin AJ, Ostermann M, Slack AJ, Diller GP, Finney SJ, Evans TW. Acute kidney injury after cardiac surgery according to risk/injury/failure/loss/end-stage, acute kidney injury network, and kidney disease: improving global outcomes classifications. J. Crit. Care 28, 389–396 (2013).
    11. Verma S, Kellum JA. Defining acute kidney injury. Crit. Care Clin. 37, 251–266 (2021).
    12. Kurzhagen JT, Dellepiane S, Cantaluppi V, Rabb H. AKI: an increasingly recognized risk factor for CKD development and progression. J. Nephrol. 33, 1171–1187 (2020).
    13. Garrard H, Jones S. Fluid and electrolyte problems in renal dysfunction. Anaesth. Intensiv. Care Med. 19, 224–227 (2018).
    14. Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).
    15. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).
    16. Basak D, Uddin MN, Hancock J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers (Basel) 12, 3336 (2020).
    17. Liebl MC, Hofmann TG. Cell fate regulation upon DNA damage: p53 serine 46 kinases pave the cell death road. Bioessays 41, e1900127 (2019).
    18. Chen J, Zhang D, Qin X, Owzar K, McCann JJ, Kastan MB. DNA-damage-induced alternative splicing of p53. Cancers (Basel) 13, 251 (2021).
    19. Geden MJ, Romero SE, Deshmukh M. p53 is required for nuclear but not mitochondrial DNA damage-induced degeneration. Cell Death Dis. 12, 104 (2021).
    20. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459–470 (2002).
    21. Bell EL, Chandel NS. Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem. 43, 17–27 (2007).
    22. Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91, 807–819 (2006).
    23. Cairns RA, Hill RP. Acute hypoxia enhances spontaneous lymph node metastasis in an orthotopic murine model of human cervical carcinoma. Cancer Res. 64, 2054–2061 (2004).
    24. Møller P, Loft S, Lundby C, Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J. 15, 1181–1186 (2001).
    25. Papp‐Szabó E, Josephy PD, Coomber BL. Microenvironmental influences on mutagenesis in mammary epithelial cells. Int. J. Cancer 116, 679–685 (2005).
    26. Zhao H, Ning J, Lemaire A, Koumpa FS, Sun JJ, Fung A, et al. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats. Kidney Int. 87, 738–748 (2015).
    27. Chiappe-Gutierrez M, Kitzmueller E, Labudova O, Fuerst G, Hoeger H, Hardmeier R, et al. mRNA Levels of the hypoxia inducible factor (HIF-1) and DNA repair genes in perinatal asphyxia of the rat. Life Sci. 63, 1157–1167 (1998).
    28. Alvarez-Tejado M, Naranjo-Suarez S, Jiménez C, Carrera AC, Landázuri MO, Peso L. Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J. Biol. Chem. 276, 22368–22374 (2001).
    29. Jia Y, Li HY, Wang Y, Wang J, Zhu JW, Wei YY, et al. Crosstalk between hypoxia-sensing ULK1/2 and YAP-driven glycolysis fuels pancreatic ductal adenocarcinoma development. Int. J. Biol. Sci. 17, 2772–2794 (2021).
    30. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).
    31. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).
    32. Hewitson KS, McNeill LA, Riordan MV, Tian YM, Bullock AN, Welford RW, et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).
    33. Metzen E, Zhou J, Jelkmann W, Fandrey J, Brüne B. Nitric oxide impairs normoxic degradation of HIF-1α by inhibition of prolyl hydroxylases. Mol. Biol. Cell 14, 3470–3481 (2003).
    34. Bernhardt WM, Câmpean V, Kany S, Jürgensen JS, Weidemann A, Warnecke C, et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).
    35. Xie Y, Jiang D, Xiao J, Fu C, Zhang Z, Ye Z, et al. Ischemic preconditioning attenuates ischemia/reperfusion-induced kidney injury by activating autophagy via the SGK1 signaling pathway. Cell Death Dis. 9, 338 (2018).
    36. Kelly KJ, Plotkin Z, Vulgamott SL. & Dagher, P. C. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor. J. Am. Soc. Nephrol. 14, 128–138 (2003).
    37. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).
    38. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, et al. β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151, 1457–1473 (2012).
    39. Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, et al. Physical interaction with yes-associated protein enhances p73 transcriptional activity. J. Biol. Chem. 276, 15164–15173 (2001).
    40. Bastianello G, Porcella G, Beznoussenko GV, Kidiyoor G, Ascione F, Li Q, et al. Cell stretching activates an ATM mechano-transduction pathway that remodels cytoskeleton and chromatin. Cell Rep. 42, 113555 (2023).
    41. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 13, 877–883 (2011).
    42. Pan D. The Hippo ssignaling pathway in ddevelopment and cancer. Dev. Cell 19, 491–505 (2010).
    43. Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496–5509 (2008).
    44. Oka T, Mazack V, Sudol M. Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J. Biol. Chem. 283, 27534–27546 (2008).
    45. Ma B, Chen Y, Chen L, Cheng H, Mu C, Li J, et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat. Cell Biol. 17, 95–103 (2015).
    46. Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, et al. Alternative Wnt signaling activates YAP/TAZ. Cell 162, 780–794 (2015).
    47. Wang X, Valls AF, Schermann G, Shen Y, Moya IM, Castro L, et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462-478.e7 (2017).
    48. Zhang X, Li Y, Ma Y, Yang L, Wang T, Meng X, et al. Yes-associated protein (YAP) binds to HIF-1α and sustains HIF-1α protein stability to promote hepatocellular carcinoma cell glycolysis under hypoxic stress. J. Exp. Clin. Cancer Res. 37, 216 (2018).
    49. Li H, Li X, Jing X, Li M, Ren Y, Chen J, et al. Hypoxia promotes maintenance of the chondrogenic phenotype in rat growth plate chondrocytes through the HIF-1α/YAP signaling pathway. Int. J. Mol. Med. 42, 3181–3192 (2018).
    50. Zhu B, Pan S, Liu J, Wang S, Ni Y, Xiao L, et al. HIF‐1α forms regulatory loop with YAP to coordinate hypoxia‐induced adriamycin resistance in acute myeloid leukemia cells. Cell Biol. Int. 44, 456–466 (2020).
    51. Chang HA, Ou Yang RZ, Su JM, Nguyen TMH, Sung JM, Tang MJ, et al. YAP nuclear translocation induced by HIF-1α prevents DNA damage under hypoxic conditions. Cell Death Discov. 9, 385 (2023).
    52. Wang S, Lu Y, Yin MX, Wang C, Wu W, Li J, et al. Importin α1 mediates Yorkie nuclear import via an N-terminal non-canonical nuclear localization signal. J. Biol. Chem. 291, 7926–7937 (2016).
    53. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).
    54. Lin SC, Lee HC, Hou PC, Fu JL, Wu MH, Tsai SJ. Targeting hypoxia‐mediated YAP1 nuclear translocation ameliorates pathogenesis of endometriosis without compromising maternal fertility. J. Pathol. 242, 476–487 (2017).
    55. Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467 (2003).
    56. Basu S, Totty NF, Irwin MS, Sudol M, Downward J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).
    57. Freitas N, Cunha C. Mechanisms and signals for the nuclear import of proteins Curr Genomics. 10, 550–557 (2009).
    58. Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397-1410.e14 (2017).
    59. Tessier TM, MacNeil KM, Mymryk JS. Piggybacking on classical import and other non-classical mechanisms of nuclear import appear highly prevalent within the human proteome. Biology (Basel). 9, 188 (2020).
    60. Depping R, Steinhoff A, Schindler SG, Friedrich B, Fagerlund R, Metzen E, et al. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. Biochim Biophys Acta. 1783, 394–404 (2008).
    61. Hong CF, Chen WY, Wu CW. Upregulation of Wnt signaling under hypoxia promotes lung cancer progression. Oncol. Rep. 38, 1706–1714 (2017).
    62. Lee Y, Kim NH, Cho ES, Yang JH, Cha YH, Kang HE, et al. Dishevelled has a YAP nuclear export function in a tumor suppressor context-dependent manner. Nat Commun. 9, 2301 (2018).
    63. Sharma M, Castro-Piedras I, Simmons GE, Pruitt K. Dishevelled: A masterful conductor of complex Wnt signals. Cell. Signal. 47, 52–64 (2018).
    64. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol. Rev. 94, 1287–1312 (2014).
    65. Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development 141, 1614–1626 (2014).
    66. Ghosh S, O’Connor TJ. Beyond paralogs: the multiple layers of redundancy in bacterial pathogenesis. Front Cell Infect Microbiol. 7, 467 (2017).
    67. Plouffe SW, Lin KC, Moore JL 3rd, Tan FE, Ma S, Ye Z, et al. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. J Biol Chem. 293, 11230–11240 (2018).
    68. Dandage R, Landry, CR. Paralog dependency indirectly affects the robustness of human cells. Mol. Syst. Biol. 15, e8871 (2019).
    69. Xiang L, Gilkes DM, Hu H, Luo W, Bullen JW, Liang H, et al. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells. Oncotarget 6, 11768–11778 (2015).
    70. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCFβ-TRCP. Genes Dev. 24, 72–85 (2010).
    71. Moleirinho S, Hoxha S, Mandati V, Curtale G, Troutman S, Ehmer U, et al. Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. Elife. 6, e23966 (2017).
    72. Liu H, Mei D, Xu P, Wang H, Wang Y. YAP promotes gastric cancer cell survival and migration/invasion via the ERK/endoplasmic reticulum stress pathway. Oncol. Lett. 18, 6752–6758 (2019).
    73. Zhao W, Dong QF, Li LW, Yan ZF, Huo JL, Chen XY, et al. Blockage of glioma cell survival by truncated TEAD-binding domain of YAP. J. Cancer Res. Clin. Oncol. 147, 1713–1723 (2021).
    74. Oku Y, Nishiya N, Tazawa T, Kobayashi T, Umezawa N, Sugawara Y, et al. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP–E2F1–DNA damage response pathway axis. FEBS Open Bio. 8, 1001–1012 (2018).
    75. Li H, Wu BK, Kanchwala M, Cai J, Wang L, Xing C, et al. YAP/TAZ drives cell proliferation and tumour growth via a polyamine–eIF5A hypusination–LSD1 axis. Nat. Cell Biol. 24, 373–383 (2022).
    76. Zhang Y, Wang Y, Zhou D, Wang K, Wang X, Wang X, et al. Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene 40, 4580–4591 (2021).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE