簡易檢索 / 詳目顯示

研究生: 賴俊志
Lai, Jiun-Chih
論文名稱: 高溫人工時效處理對7075鋁合金拉伸延性之影響及可靠度研究
Effects of High Temperature Artificial Aging on Tensile Ductility and Reliability of 7075 Aluminum Alloy
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 67
中文關鍵詞: 高溫人工時效處理拉伸延性韋伯解析
外文關鍵詞: High temperature artificial aging, Tensile ductility, Weibull analysis
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 7075鋁合金為質輕、具高強度的熱處理型鋁合金,目前多應用在國防與航空工業等,如飛機的機翼。然而因該合金成形性較不如6xxx系列佳,難以製造出形狀複雜且擁有7xxx系列高強度的製品。因成形性和拉伸延性有密切關係,因此本研究嘗試以7075鋁合金擠形棒材進行高溫人工時效處理改善拉伸延性,以提供易加工的前處理,並和一般常用改善7xxx系列加工性的完全退火材進行比較,以及利用韋伯解析探討兩者處理對於拉伸延性的可靠度表現。
    高溫時效可使材料時效所需時間縮短,且此時材料內大多以η平衡相為主,進而使析出強化減弱、延性可獲得提升。由實驗結果顯示,490℃、1小時固溶處理後,經280℃持熱12時有約25%的最佳總延伸率,高於完全退火處理的21%;從金相組織觀察可知,高溫時效材比完全退火材少了許多粗大的鋁-銅晶出相,降低微空孔的生成,延遲破斷發生。此外,該高溫人工時效條件之亦高於完全退火材,故對於塑性加工上有其優勢。
    可靠度表現方面,以具有最佳TE的高溫時效材和完全退火材進行比較。結果顯示兩者皆為破壞遞增型且韋伯模數m值符合應用需求。然而高溫時效具較高的位置參數,使得其分佈曲線整體右移,在高TE的可靠度大於完全退火材,故就應用層面來說,高溫人工時效較完全退火可提高7075鋁合金在拉伸延性上的可靠度。

    7075 aluminum alloy is light weight and with higher strength among aluminum alloy, and wildly use in aerospace industry, such as plane wing. To increase formability for broadening applications of this alloy, fully annealing normally has been wildly employed in industry, but it takes much time in process; for this reason, we use another method, high temperature aging (HTA) treatment to create another treatment to improve it. HTA reduces time of treatment and lower strength by formation of non-coherent η phase in matrix, so as to increase tensile ductility for better formability. Results show that the best parameter of HTA increasing tensile ductility is HTA280-12, and it lacked of lots of large particles, Al-Cu phase which is usually seen in fully annealed AA7075. The HTA280-12 had better reliability analyzed by Weibull distribution than fully annealed.

    摘要 II Extended Abstract III 誌謝 XIV 總目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章、 前言 1 第二章、 文獻回顧 3 2.1 7075鋁合金 3 2.2 常見7075鋁合金之人工時效處理 3 2.3 韋伯分析 4 2.3.1 材料可靠度之重要性及其工程統計意義 4 2.3.2 韋伯分布函數 (Weibull Distribution Function)[13-16] 5 2.3.3 韋伯三參數之物理意義[17-20] 5 2.3.4 韋伯三參數之求法 7 第三章、 實驗步驟 16 3.1 實驗材料與實驗架構 16 3.2 熱處理條件 16 3.3 微觀組織分析 16 3.3.1 金相觀察 16 3.3.2 掃描式電子顯微鏡觀察 (SEM) 17 3.3.3 X-ray繞射分析 (XRD) 17 3.3.4 穿透式電子顯微鏡觀察 (TEM) 17 3.4 拉伸機械性質分析 18 3.5 加工硬化率(Working hardening rate)之求得 18 3.6 可靠度分析 19 第四章、 實驗結果 24 4.1 各組材料之微觀組織 24 4.1.1 F材之微觀組織 24 4.1.2 O材之微觀組織 24 4.1.3 HTA材之微觀組織 24 4.2 室溫拉伸測試結果 25 4.2.1 拉伸測試結果 25 4.2.2 破斷面觀察結果 25 4.3 韋伯分析結果 25 第五章、 討論 50 5.1 O與HTA處理對金相組織之影響 50 5.1.1 完全退火處理 50 5.1.2 高溫人工時效處理 50 5.2 O材與HTA材之拉伸延性探討 51 5.2.1 高溫人工時效程度對拉伸延性之影響 51 5.2.2 O材與HTA材組織對拉伸延性與加工硬化率之影響 52 5.2.3 O材與HTA材預應變拉伸後之T6材拉伸強度表現 54 5.3 韋伯可靠度解析 54 5.3.1 O與HTA 280-12之韋伯三參數討論 54 5.3.2 O與HTA 280-12之TE可靠度綜合探討 55 第六章、 結論 64 文獻資料 65

    1. M. De Sanctis, “Structure and properties of rapidly solidified ultrahigh
    strength Al–Zn–Mg–Cu alloys produced by spray deposition”, Mater
    Sci Eng., 141, pp.103–121, 1991.
    2. R. C. Dorward and K. R Hasse, “Flaw Growth of 7075, 7475, 7050 and 7049 Aluminum Plate in Stress Corrosion Environments”, Final NASA Report Contact No. NAS8-30896, 1976.
    3. W. Gruhl, “Stress Corrosion Cracking of High Strength Aluminum Alloys”, Zeitschrift fuer Metallkunde, vol. 75, pp. 819-826, 1984.
    4. John Sessler and Volker Welss, “Materials Data Book: Aluminum Alloy 7075”, Chap. 3, p.10, 1966.
    5. T. Ertürk, and E. Kazazoglu, “Effect of aging on bulk formability of aluminum alloys”, American Society for Testing and Materials, pp. 19-34,1982.
    6. T. H. Sanders Jr. and E. A. Starke Jr., “Relationship of Microstructure to Monotonic and Cyclic straining of two Age Hardening Aluminum Alloys”, Metall. Trans., 7A, pp. 1407-1418, 1976.
    7. M. Conserva, E.D. Russo, and O. Caloni, “Comparison of the influence of chrominum and zirconium on the quench sensitivity of Al-Zn-Mg-Cu alloys”, Metall. Trans, 2, pp. 1227-1232, 1971.
    8. M. Kanno and B. L. Ou, “Heterogeneous precipitation of intermediate phases on Al3Zr particles in Al-Cu-Zr and Al-Li-Cu-Zr alloys”, Mater. Trans, 32(5), pp. 445-450, 1991.
    9. J. D. Robson, “Microstructural evolution in aluminum alloy 7050 during processing”, Materials Science and Engineering, A (382), pp. 112-121, 2004.
    10. J. E. Hatch, “Aluminum: Properties and Physical Metallurgy” American Society for Metals, pp. 145-158, 1984.
    11. K. Rajan, W. Wallace, and J. C. Beddoes, “Microstructural study of a high-strength stress-corrosion resistant 7075 aluminium alloy”, Journal of Materials Science, 17 pp. 2817-2824, 1982
    12. J. T. Staley, “Aging kinetics of aluminum alloy 7050”, Metallurgical Transactions, pp. 929-932, 1974.
    13 P. D. O'Connor., “Practical reliability engineering”, John Wiley & Sons, Chap. 1-6, 1991
    14. K. C. Sons, “Reliability in engineering design”, Chap.1-6, John Wiley & Sons, 1986.
    15. A. D. S. Cater, “Mechanical reliability”, John Wiley & Sons, 1986.
    16. B. Fraucher and W. R. Tyson, “On the determination of Weibull parameters”, Materials Science Letters, 7, pp. 1199-1203, 1988.
    17. X. D. Li and L. Edwards, “Theoretical modeling of fatigue threshold for aluminum alloys”, Engineering Fracture Mechanics” 20, pp. 35-48, 1996.
    18. 真壁肇編, 陳耀茂譯, “可靠性工程入門”, 第8章, 中華民國品質 管制學會, 1989.
    19. A. Ghosh, “A fortran program for fitting Weibull distribution and generating samples”, Computers and Geosciences, 25, pp. 729-738, 1999.
    20. H. Qiao and C. P. Tsokos, “Estimation of the three parameter Weibull probability distribution”, Mathematics and Computers in Simulation, 39, pp. 173-185, 1995.
    21. S. H. Dai and M. O. Wang, “Reliability analysis in engineering applications”, Van Nostrand Reinhold, pp. 353-358, 1992.
    22. J. D. Embury and R. B. Nicholson, “The nucleation of precipitates: the system Al-Zn-Mg”, Acta Metall., 13, pp. 403-416, 1965.
    23. P. J. Worthington and B. J. Brindley, Serrated yielding in substitutional alloys, Philos. Mag., 19, p.1175, 1969.
    24. P. Rodriguez, Serrated plastic flow, Bull. Mater. Sci., 6, p. 653, 1984,
    25. J. E. Hatch, “Aluminum properties and physical metallurgy”, pp. 152-153, 1984.
    26. X. M. Li and M. J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys”, Journal of Alloys and Compounds, 509, pp. 471-476, 2010.
    27. J. Martin, and M. Root, “Structure evolution and recrystallization of 7xxx Series Aluminum Alloys”, Department of Mechanical and Materials Engineering, 2010.
    28 J. A. Wert, “Identification of precipitates in 7075 Al after high-temperature aging”, Scripta Metall, 15, pp. 445-447, 1981.
    29. R. Deiasi and P. N. Adler, “Calorimetric Studies in 7000 Series Aluminum Alloys: I. Matrix Precipitate Characterization of 7075”, Metallurgical Transactions, 8A, pp. 1176-1183, 1977.
    30. T. Pardoeny and Y. Brechet, “Influence of microstructure-driven strain localization on the ductile fracture of metallic alloys”, Philosophical Magazine, 84, pp. 268-297, 2004.
    31. Riqiang Liang and A. S. Khan, “A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures”, International Journal of Plasticity, 15, p. 963-980, 1999.
    32. S. S. Hecker, “Formability of aluminum alloy sheets”, Journal of Engineering Materials and Technology, 97, (1), pp. 66-73, 1975.
    33. “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Metals Handbook, Vol.2, 10th ed. ASM International, 1990.

    無法下載圖示 校內:2017-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE