| 研究生: |
楊國強 Yang, Kuo-Chiang |
|---|---|
| 論文名稱: |
異向性柱體承受剪力之狀態空間解析 A State Space Formalism for Anisotropic Cylinders Subjected to Shear Forces. |
| 指導教授: |
譚建國
Tarn, Jiann-Quo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 剪力 、狀態空間 、異向性彈性力學 、柱體 |
| 外文關鍵詞: | State space formalism, Anisotropic elasticity, Cylinder, Shear force |
| 相關次數: | 點閱:181 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文由三維彈性力學出發,在卡氏座標下,建立異向性柱體承受剪力作用下之狀態空間解析模式。相較於傳統的理論架構,狀態空間解析模式將所處理之力學問題視為一線性系統,針對問題審慎選擇狀態向量,對場量變數適當的分類,並透過有系統的矩陣運算與推導,得到形式簡單優美的狀態方程式。將此一理論套用至不同異向性程度之柱體,探討其應力分析,並與參考文獻驗證本文之適用性,進而探求斷面性質勁度矩陣,分析其所具有之特性。
A state space formalism for anisotropic elastic cylinders subjected to shear forces is established on the basis of three-dimensional basic equations of elasticity in the Cartesian coordinates. In comparison with the conventional formalisms, in the state space formalism the physical problems are dealt with in a linear system. By grouping the field variables properly using matrix notations and partitioning the constitutive matrices accordingly, the basic equations of elasticity are formulated into a simple and concise state equation in terms of state vector. The formalism is examined through the analysis of stress compared with reference documents. Further investigations in the cross-sectional properties of orthotropic and anisotropic cylinders subjected to shear forces are analyzed.
1.Dong, S. B., Kosmatka, J. B., Lin, H. C., On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder-Part I: Methodology for Saint-Venant Solutions, Journal of Applied Mechanics, vol.68, pp.376-381, 2001.
2.Kosmatka, J. B., Lin, H. C., Dong, S. B., On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder-Part II: Cross-Sectional Properties, Journal of Applied Mechanics, vol.68, pp.382-391, 2001.
3.Lekhnitskii, S.G., Theory of Elasticity of an Anisotropic Body, Translated from the revised 1977 Russian edition, Mir, Moscow(1981).
4.Lin, H. C., Dong, S. B., Kosmatka, J. B., On Saint-Venant’s Problem for an Inhomogeneous, Anisotropic Cylinder-Part III: End Effects, Journal of Applied Mechanics, vol.68, pp.392-398, 2001.
5.Tarn, J.Q., A state space formalism for anisotropic elasticity. Part I: Rectilinear anisotropy, International Journal of Solids and Structure vol.39, pp.5143-5155, 2002a.
6.Tarn, J.Q., A state space formalism for anisotropic elasticity. Part II: Cylindrical anisotropy, International Journal of Solids and Structure vol.39, pp.5157-5172, 2002b.
7.Tarn, J.Q., A state space formalism for piezothermoelasticity, International Journal of Solids and Structure vol.39, pp.5173-5184, 2002c.
8.Tarn, J.Q., Exact solution of a piezoelectric circular tube or bar under extension, torsion, pressuring, shearing, uniform electric loading and temperature change, Proceeding of Royal Society London A, in press, 2002d.
9.Ting, T.C.T., 1996, Anisotropic Elasticity, Theory and Applications. Oxford University, Oxford.
10.Stroh, A.N., Dislocations and cracks in anisotropic elasticity. Philosophical Magazine 3, pp.625-646, 1958.
11.鍾啟泰,1998年國立成功大學土木工程研究所碩士論文,圓柱型異向彈性圓管之解析及數值驗證。