| 研究生: |
鮑越霞 Priskila Adjani Diankristanti |
|---|---|
| 論文名稱: |
透過基改大腸桿菌全細胞催化生產高產量衣康酸 Towards high-level itaconic acid (IA) production using engineered Escherichia coli by whole-cell bioconversion |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 衣康酸 、全細胞催化 、分子伴侶蛋白 、大腸桿菌 、順烏頭酸酶 、冷激 |
| 外文關鍵詞: | Itaconic acid, Whole-cell bioconversion, Escherichia coli, aconitase, cold treatment, cis-aconitate decarboxylase |
| ORCID: | 0000-0002-2006-5747 |
| ResearchGate: | https://www.researchgate.net/profile/Priskila-Diankristanti |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著工業和科技的進步,石油衍生化學品對海洋、水資源、土壤以及空氣等生態環境造成嚴重的危害。相較於某些石油衍生化學品,由生物製造的化學品通常具有較低的毒性和較少的有害副產物,有助於降低對土壤、水源和生物的污染風險。衣康酸(Itaconic acid, IA) 作為生物化學品原料,被應用於生成多種工業材料,如塑膠纖維、生物燃料與淨化水資源的去除劑。衣康酸可於生物體內藉由順烏頭酸酶(Acn, EC 4.2.1.3)和烏頭酸脫羧酶(CadA, EC 4.1.1.6)進行催化合成。然而,通過微生物發酵生產衣康酸會伴隨其他的生物反應,造成副產物的累積和過長的培養時間。為克服這些限制,本研究利用經基因工程改造的大腸桿菌進行全細胞生物催化反應,嘗試在短時內高效地生產體外(in vitro)衣康酸。
本研究利用以甘油為基礎的限制營養培養基(M9培養基),在含有pLemo輔助質體和GroELS基因簇的大腸桿菌BL21(DE3)中實現72.44 g/L的衣康酸產量。同時通過全面的保種與接種策略,使BD::7G和L21的穩定催化活性長達30天。為了進一步的提高產量,本研究在反應前進行了24小時的-80°C冷處理,使衣康酸的產量與轉化率分別達到了81.58 g/L和92.22%。此外,在含有高濃度底物的大規模衣康酸催化實驗中,成功實現了生物催化劑的再利用,提高了商業經濟的可行性。我們在3升的生物反應器中進行全細胞催化,通過精確的溶氧和pH值監測,在一次的批次培養中獲得大量的生物催化劑。最後,在50 mL的反應體系中獲得了105.68 g/L的衣康酸最高產量,並在四次的重複使用後,依舊保持相對穩定的活性。
本研究透過大規模的全細胞催化生產大量的衣康酸,並成功實現生物催化劑的再利用。在提出一種對環境友善的生物催化法的同時,提高了生產衣康酸的經濟效益。本研究提供了高效生產衣康酸的全細胞催化法,為生物催化在生產化學品的應用提出新的可行性。未來,期許這些研究成果有助於推動生產可持續的生物化學品,為實現綠色和環保的化學工業盡一份心力。
In the emerging advancement of biobased chemical production, itaconic acid (IA) is known as an essential building block for high-value chemicals in a wide range of application. IA is mainly synthesized through native fermentation in Aspergillus and Ustilago, highly relying on aconitase (Acn, EC 4.2.1.3) and cis-aconitic acid decarboxylase (CadA, EC 4.1.1.6). However, IA production via microbial fermentation suffers from undesired reactions, side products accumulation, and long cultivation time. Employing whole-cell biocatalyst, which is engineered to attain high productivity in a short cultivation period, to carry out in vitro IA production is a novel approach to mitigate the limitations. This study achieved 72.44 g/L IA using E. coli BL21(DE3) assisted by pLemo and GroELS in a glycerol-based minimal medium. Comprehensive seeding strategy was developed to maintain the biocatalysts stability up to 30 days, successfully conserving original activity of E. coli BD::7G and L21. Productivity was further enhanced by cold treatment in -80°C for 24 h prior to reaction, reaching 81.58 g/L and 92.22% conversion rate. Finally, large-scale IA bioconversion using high substrate concentration was conducted, along with the biocatalysts reutilization to achieve economic viability. The highest IA titer of 105.68 g/L was attained in a 50-mL reaction system, with relatively-steady activity after four times of repeated usages. These results pave the way of wider application of whole-cell biocatalysts for value-added chemicals.
1. A. Alva, A. Sabido-Ramos, A. Escalante, F. Bolívar (2020) New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl. Microbiol. Biotechnol. 104:1463-1479.
2. A. Chang, I. Schomburg, S. Placzek, L. Jeske, M. Ulbrich, M. Xiao, C.W. Sensen, D. Schomburg (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res. 43:D439-D446.
3. A. Hevekerl, A. Kuenz, K.D. Vorlop (2014) Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 98:10005-10012.
4. A. Kremling, J. Geiselmann, D. Ropers, H. de Jong (2015) Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol. 23(2):99-109.
5. A. Li, N. van Luijk, M. Ter Beek, M. Caspers, P. Punt, M. van der Werf (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet. Biol. 48(6):602-611.
6. A.S. Karim, K.A. Curran, H.S. Alper (2013) Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res. 13:107-116.
7. B. Kaup, S. Bringer-Meyer, H. Sahm (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl. Microbiol. Biotechnol. 64:333-339.
8. B. Lin and Y. Tao (2017) Whole-cell biocatalysts by design. Microb. Cell Factories 16:1-12.
9. C. Xue, Y.C. Yi, I.S. Ng (2021) Migration of glutamate decarboxylase by cold treatment on whole-cell biocatalyst triggered activity for 4-aminobutyric acid production in engineering Escherichia coli. Intl. J. Biol. Macromol. 190:113-119.
10. C. Zhao, Z. Cui, X. Zhao, J. Zhang, L. Zhang, Y. Tian, Q. Qi, J. Liu (2019) Enhanced itaconic acid production in Yarrowia lipolytica via heterologous expression of a mitochondrial transporter MTT. Appl. Microbiol. Biotechnol. 103:2181-2192.
11. C.C. de Carvalho (2017) Whole cell biocatalysts: essential workers from nature to the industry. Microb. Biotechnol. 10 250-263.
12. C.C. Hsiang, P.A. Diankristanti, S.I. Tan, Y.C. Ke, Y.C. Chen, S.S.W. Effendi, I.S. Ng (2022) Tailoring key enzymes for renewable and high-level itaconic acid production using genetic Escherichia coli via whole-cell bioconversion. Enzyme Microb. Technol. 160:110087.
13. C.C. Hsiang, S.I. Tan, Y.C. Chen, I.S. Ng (2023) Genetic design of co-expressing a novel aconitase with cis-aconitate decarboxylase and chaperone GroELS for high-level itaconic acid production. Process Biochem. 129:133-139.
14. C.J. Chiang, M.C. Hu, Y.P. Chao (2020) A strategy to improve production of recombinant proteins in Escherichia coli based on a glucose–glycerol mixture and glutamate. J. Agric. Food Chem. 68:8883-8889.
15. C.P. Papaneophytou and G. Kontopidis (2014) Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr. Purif. 94:22-32.
16. C.T. Calam, A.E. Oxford, H. Raistrick (1939) Studies in the biochemistry of micro-organisms: Itaconic acid, a metabolic product of a strain of Aspergillus terreus Thom. Biochem. J. 33(9):1488.
17. C.T. Walsh and B.S. Moore (2019) Enzymatic cascade reactions in biosynthesis, Angew. Chem. Intl. Ed. 58:6846-6879.
18. D. Kopp and A. Sunna (2020) Alternative carbohydrate pathways–enzymes, functions and engineering. Crit. Rev. Biotechnol. 40(7):895-912.
19. E.Y. Jeon, A.H. Baek, U.T. Bornscheuer, J.B. Park (2015) Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters. Appl. Microbiol. Biotechnol. 99:6267-6275.
20. F. Angius, O. Ilioaia, A. Amrani, A. Suisse, L. Rosset, A. Legrand, A. Abou-Hamdan, M. Uzan, F. Zito, B. Miroux (2018) A novel regulation mechanism of the T7 RNA polymerase based expression system improves overproduction and folding of membrane proteins. Sci. Rep. 8:1-11.
21. G. Luo, M. Fujino, S. Nakano, A. Hida, T. Tajima, J. Kato (2020) Accelerating itaconic acid production by increasing membrane permeability of whole-cell biocatalyst based on a psychrophilic bacterium Shewanella livingstonensis Ac10. J. Biotechnol. 312:56-62.
22. G. Tevž, M. Benčina, M. Legiša (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl. Microbiol. Biotechnol. 87:1657-1664.
23. H. Hosseinpour Tehrani, J. Becker, I. Bator, K. Saur, S. Meyer, A.C. Rodrigues Lóia, L.M. Blank, N. Wierckx (2019a) Integrated strain-and process design enable production of 220 g L− 1 itaconic acid with Ustilago maydis. Biotechnol. Biofuels. 12:1-11.
24. H.G. Menzella (2011) Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb. Cell Factories 10:1-8.
25. I. Schlembach, H. Hosseinpour Tehrani, L.M. Blank, J. Büchs, N. Wierckx, L. Regestein, M.A. Rosenbaum (2020) Consolidated bioprocessing of cellulose to itaconic acid by a co-culture of Trichoderma reesei and Ustilago maydis. Biotechnol. Biofuels 13:1-18.
26. Athey, J., Alexaki, A., Osipova, E., Rostovtsev, A., Santana-Quintero, L.V., Katneni, U., Simonyan, V. and Kimchi-Sarfaty, C., 2017. A new and updated resource for codon usage tables. BMC bioinformatics, 18, pp.1-10.
27. J. Kaur, A. Kumar, J. Kaur (2018) Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Intl. J. Biol. Macromol. 106:803-822.
28. J. Kim, H.M. Seo, S.K. Bhatia, H.S. Song, J.H. Kim, J.M. Jeon, K.Y. Choi, W. Kim, J.J. Yoon, Y.G. Kim, Y.H. Yang (2017) Production of itaconate by whole-cell bioconversion of citrate mediated by expression of multiple cis-aconitate decarboxylase (cadA) genes in Escherichia coli. Sci. Rep. 7:1-9.
29. J. Son, J.H. Jang, I.H. Choi, C.G. Lim, E.J. Jeon, H. Bae Bang, K.J. Jeong (2021) Production of trans-cinnamic acid by whole-cell bioconversion from L-phenylalanine in engineered Corynebacterium glutamicum. Microb. Cell Factories, 20:1-12.
30. J. Wachtmeister and D. Rother (2016) Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr. Opin. Biotechnol. 42:169-177.
31. J.C. Philp, R.J. Ritchie, J.E. Allan (2013) Biobased chemicals: the convergence of green chemistry with industrial biotechnology, Trends Biotechnol. 31:219-222.
32. J.K. Sakkos, L.P. Wackett, A. Aksan (2019) Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Sci. Rep. 9:1-12.
33. J.M. Bolivar, J.M. Woodley, R. Fernandez-Lafuente (2022) Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem. Soc. Rev. 51.
34. J.M.G. Rodriguez, N.P. Hux, S.J. Philips, M.H. Towns (2019) Michaelis–Menten graphs, Lineweaver–Burk plots, and reaction schemes: Investigating introductory biochemistry students’ conceptions of representations in enzyme kinetics. J. Chem. Edu. 96(9):1833-1845.
35. K. Martínez-Gómez, N. Flores, H.M. Castañeda, G. Martínez-Batallar, G. Hernández-Chávez, O.T. Ramírez, G. Gosset, S. Encarnación, F. Bolivar (2012) New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb. Cell Factories 11:1-21.
36. K.J. Fox and K.L. Prather (2020) Carbon catabolite repression relaxation in Escherichia coli: global and sugar-specific methods for glucose and secondary sugar co-utilization. Curr. Opin. Chem. Eng. 30:9-16.
37. K.S. Vuoristo, A.E. Mars, J.V. Sangra, J. Springer, G. Eggink, J.P. Sanders, R.A. Weusthuis (2015) Metabolic engineering of itaconate production in Escherichia coli. Appl. Microbiol. Biotechnol. 99:221-228.
38. L.B. Lockwood and G.E. Ward (1945) Fermentation Process for Itaconic Acid. Ind. Eng. Chem. 37(4):405-406.
39. M. Hayer-Hartl, A. Bracher, F.U. Hartl (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem. Sci. 41(1):62-76.
40. M. Merkel, D. Kiefer, M. Schmollack, B. Blombach, L. Lilge, M. Henkel, R. Hausmann (2022) Acetate-based production of itaconic acid with Corynebacterium glutamicum using an integrated pH-coupled feeding control. Bioresour. Technol. 351:126994.
41. M. Mojarrad, T. Tajima, A. Hida, J. Kato (2021) Psychrophile-based simple biocatalysts for effective coproduction of 3-hydroxypropionic acid and 1, 3-propanediol. Biosci. Biotech. Biochem. 85(3):728-738.
42. M. Okabe, D. Lies, S. Kanamasa, E.Y. Park (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84:597-606.
43. M. Zhao, Y. Li, F. Wang, Y. Ren, D. Wei (2022) A CRISPRi mediated self-inducible system for dynamic regulation of TCA cycle and improvement of itaconic acid production in Escherichia coli. Synth. Syst. Biotechnol. 7:982-988.
44. M.F. Buffing, H. Link, D. Christodoulou, U. Sauer (2018) Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis. Sci. Rep. 8(1):1-10.
45. M.L. Blumhoff, M.G. Steiger, D. Mattanovich, M. Sauer (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab. Eng. 19:26-32.
46. M.R. Ki and S.P. Pack (2020) Fusion tags to enhance heterologous protein expression. Appl. Microbiol. Biotechnol. 104(6):2411-2425.
47. M.T. Wortel, E. Noor, M. Ferris, F.J. Bruggeman, W. Liebermeister (2018) Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput. Biol. 14(2):e1006010.
48. P. Chang, G.S. Chen, H.Y. Chu, K.W. Lu, C.R. Shen (2017) Engineering efficient production of itaconic acid from diverse substrates in Escherichia coli. J. Biotechnol. 249:73-81.
49. P.A. Diankristanti, S.S.W. Effendi, C.C. Hsiang, I.S. Ng (2023) High-level itaconic acid (IA) production using engineered Escherichia coli Lemo21 (DE3) toward sustainable biorefinery. Enzyme Microb. Technol. 167:110231.
50. P.S. Panesar, R. Kaur, R.S. Singh, J.F. Kennedy (2018) Biocatalytic strategies in the production of galacto-oligosaccharides and its global status. Intl. J. Biol. Macromol. 111:667-679.
51. R.C. Nubel RC and E.D. Ratajak (1964) US-Patent 3 044 941 (to Pfizer): Process for producing itaconic acid.
52. S. Costa, A. Almeida, A. Castro, L. Domingues (2014) Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front. Microbiol. 5:63.
53. S. Kanamasa, L. Dwiarti, M. Okabe, E.Y. Park (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl. Microbiol. Biotechnol. 80:223-229.
54. S. Krull, L. Eidt, A. Hevekerl, A. Kuenz, U. Prüße (2017) Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem. 63:169-176.
55. S. Mazumdar, J.M. Clomburg, R. Gonzalez (2010) Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl. Environ. Microbiol. 76(13):4327-4336.
56. S. Mazurenko, Z. Prokop, J. Damborsky (2019) Machine learning in enzyme engineering. ACS Catal. 10:1210-1223.
57. S. Schlegel, J. Löfblom, C. Lee, A. Hjelm, M. Klepsch, M. Strous, D. Drew, D.J. Slotboom, J.W. de Gier, J.W (2012) Optimizing membrane protein overexpression in the Escherichia coli strain Lemo21 (DE3). J. Mol. Biol. 423(4):648-659.
58. S. Wagner, L. Baars, A.J. Ytterberg, A. Klussmeier, C.S. Wagner, O. Nord, P.Å. Nygren, K.J. Wijk, J.W. de Gier (2007) Consequences of membrane protein overexpression in Escherichia coli, Mol. Cell Proteomics 6:1527-1550.
59. S.C. Yang, W.W. Ting, I.S. Ng (2022) Effective whole cell biotransformation of arginine to a four-carbon diamine putrescine using engineered Escherichia coli. Biochem. Eng. J. 185:108502.
60. S.H. Park, G.B. Kim, H.U. Kim, S.J. Park, J.I. Choi (2019) Enhanced production of poly 3 hydroxybutyrate (PHB) by expression of response regulator DR1558 in recombinant Escherichia coli. Intl. J. Biol. Macromol. 131:29-35.
61. S.S. Abby, J. Cury, J. Guglielmini, B. Néron, M. Touchon, E.P. Rocha (2016) Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6:1-14.
62. S.S. Yazdani and R. Gonzalez (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab. Eng. 10(6):340-351.
63. S.S.W. Effendi and I.S. Ng (2022) Reprogramming T7RNA Polymerase in Escherichia coli Nissle 1917 under Specific Lac Operon for Efficient p-Coumaric Acid Production. ACS Synth. Biol. 11:3471-3481.
64. S.Y. Yang, T.R. Choi, H.R. Jung, Y.L. Park, Y.H. Han, H.S. Song, S.K. Bhatia, K. Park, J.O. Ahn, W.Y. Jeon, J.S. Kim (2019) Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme Microb. Technol. 128:72-78.
65. T. Cordes, A. Michelucci, K. Hiller (2015) Itaconic acid: the surprising role of an industrial compound as a mammalian antimicrobial metabolite. Annu. Rev. Nutr. 35:451-473.
66. T. Klement and J. Büchs (2013) Itaconic acid–a biotechnological process in change. Bioresour. Technol. 135:422-431.
67. T. Wein, N.F. Hülter, I. Mizrahi, T. Dagan (2019) Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance, Nat. Comm. 10:1-13.
68. T. Werpy and G. Petersen (2004) Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas.
69. T. Willke and K.D. Vorlop (2001) Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56:289-295.
70. T.K.M. Nguyen, M.R. Ki, R.G. Son, S.P. Pack (2019) The NT11, a novel fusion tag for enhancing protein expression in Escherichia coli. Appl. Microbiol. Biotechnol. 103:2205-2216.
71. W.W. Ting, C.Y. Huang, P.Y. Wu, S.F. Huang, H.Y. Lin, S.F. Li, J.S. Chang, I.S. Ng (2021) Whole-cell biocatalyst for cadaverine production using stable, constitutive and high expression of lysine decarboxylase in recombinant Escherichia coli W3110. Enzyme Microb. Technol. 148:109811.
72. Y.K. Leong, C.H. Chen, S.F. Huang, H.Y. Lin, S.F. Li, I.S. Ng, J.S. Chang (2020) High-level l-lysine bioconversion into cadaverine with enhanced productivity using engineered Escherichia coli whole-cell biocatalyst. Biochem. Eng. J. 157:107547.
73. Y.M. Moon, R. Gurav, J. Kim, Y.G. Hong, S.K. Bhatia, H.R. Jung, J.W. Hong, T.R. Choi, S.Y. Yang, H.Y. Park, H.S. Joo (2018) Whole-cell immobilization of engineered Escherichia coli JY001 with barium-alginate for itaconic acid production. Biotechnol. Bioprocess Eng. 23:442-447.
74. Y.M. Moon, S.Y. Yang, T.R. Choi, H.R. Jung, H.S. Song, Y. hoon Han, H.Y. Park, S.K. Bhatia, R. Gurav, K. Park, J.S. Kim (2019) Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5-phosphate and ATP. Enzyme Microb. Technol. 127:58-64.
75. Z. Yang, X. Gao, H. Xie, F. Wang, Y. Ren, D. Wei (2017) Enhanced itaconic acid production by self‐assembly of two biosynthetic enzymes in Escherichia coli. Biotechnol. Bioeng. 114:457-462.
76. Z. Zhang, G. Kuipers, Ł. Niemiec, T. Baumgarten, D.J. Slotboom, J.W. de Gier, A. Hjelm (2015) High-level production of membrane proteins in E. coli BL21 (DE3) by omitting the inducer IPTG, Microb. Cell Factories. 14 (1):1-11.