簡易檢索 / 詳目顯示

研究生: 陳家偉
Chen, Jia-Wei
論文名稱: 以鋰鈦氧化物離子篩回收海水中鋰離子兼進行光催化產氫
Recovery of Lithium from Seawater with Lithium Titanium Oxide Ion Sieves and Photocatalytic Generation of H2
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 137
中文關鍵詞: 鋰鈦氧化物離子篩鋰金屬回收光催化
外文關鍵詞: Lithium titanate, Ion-sieves, Recovery of lithium, Phtocatalysis.
相關次數: 點閱:136下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鋰化合物有廣泛的應用(例如:充電電池、核融合以及飛機機殼之合金)導致近幾年鋰的使用量大幅增加,鋰金屬約三分之一分佈於陸地上,其餘則在海水中(0.17 mg/L),由於需求甚大,陸地上資源漸逐漸不足,目前從海水中回收鋰的技術中需耗時數月,因此本研究為開發新的海水回收鋰之技術。
    由於鋰(Li+)與氫離子(H+)具相似的離子密度,鋰鈦氧化物離子篩對Li+有相對較高的選擇性,利用固體反應(SS)與水熱法(HT)合成Li2TiO3與LiTi2O4鋰鈦氧化物,以鋰鈦氧化物離子篩(H2TiO3與H0.23Li0.77Ti2O4)回收Li+,此外,由於鋰鈦氧化物離子篩具光催化特性,而且在與氫離子交換後其吸收波長具紅移之現象(波長增加、頻率降低),因此本研究為了解在回收Li+的同時,也探討光催化降解海水中污染物以及產生氫氣之可能性。
    掃描式顯微鏡(SEM)分析發現以固體反應合成Li2TiO3與LiTi2O4之粒徑分布分別為0.2~0.4 μm與3~5 μm;而經過水熱合成法合成之Li2TiO3可得到更小的粒徑(0.1~0.3 μm)。經由NMR、XRD及同步輻射EXAFS的分析結果得知,在鋰金屬回收循環過程中並不會改變其化學結構與外觀,水熱法合成之離子篩具有較好的Li+回收率(22~28 mg Li+/g H2TiO3);以固體合成法合成的離子(Li2TiO3與LiTi2O4)回收率分別為20~25 與2~10%,在氫離子交換過程中,離子篩的鈦溶出量是幾乎可以忽略(<0.1%),且在經過三次循環,H2TiO3 的回收收效率仍能維持在82%。
    亞甲基藍光降解實驗顯示Li2TiO3 (HT)在經過24小時的UV光照射,具92%的去除效果,而且水熱法的去除效果(4-21%)比固體合成法的效果(7~51%)更高,然而,離子篩在海水中的降解效率比在水中低,可能的原因為平均粒徑的增加,導致比表面積大幅下降。此外,利用水熱合成法合成之Li2TiO3具有較好的氫氣產率,鋰鈦氧化物離子篩具選擇性Li+回收能力,也具光催化產氫及光催化降解污染物之多重功能。

    Lithium compounds have many applications (i.e., rechargeable batteries, nuclear fusion, and alloy of aircraft), leading to a highly increase of demand, however, the source of lithium is limited in the earth crusts. In spite of the low Li+ concentration in the seawater (0.17 mg/L), the potential resource can be as high as 2.5×〖10〗^14 kg. Therefore, developing an effective method for recovery of lithium from seawater is of increasing importance.
    Protonated titanate ion-sieves (H2TiO3) was used to capture Li+ from seawater due to a similar ion density between lithium ions (Li+) and protons (H+). The hydrothermal (HT) and solid-state reaction (SS) methods were used to prepare Li2TiO3 and LiTi2O4. By UV/Vis spectroscopy, the lithium titanates have the aborption zones at 200-410 nm, and a red-shift for protonated titanates was observed. The main objective of this study was, therefore, to investigate the feasibility for the recovery of lithium from seawater using the protonated lithium titanate ion-sieves (H2TiO3 and H0.23Li0.77Ti2O4). In addition, it is also of interest to study whether the lithium titanates have a capability for photocatalytic splitting of H2O in seawater for H2 fuels as well as photocatalytic degradation of organic pollutants during the lithium recovery.
    It is worth noting that the particle sizes of the LiTi2O4 (SS) and H0.23Li0.77Ti2O4 (SS) ion-sieves are in the range of 3-5 μm while the Li2TiO3 (SS) and H2TiO3 (SS) are much smaller (0.2-0.4 μm) which were determined by SEM. The Li2TiO3 (HT) and H2TiO3 (HT) ion-sieves have the average particle sizes of 0.1-0.3 μm. Since the surface exchange may play the primary role in the capture of Li+ from seawater, the larger ion-sieves turn out to possess a relatively low capability. Note that chemical structure of the lithium titanates was not perturbed during the consecutive exchanges of H+ and Li+, observed by XRD, Li7-nmr, and EXAFS. The Li2TiO3/H2TiO3 ion-sieve has negligible titanium dissolution during exchanges. After 3 cycles, the Li2TiO3/H2TiO3 (SS and HT) ion-sieve can sustain 82% of its best performance, while the LiTi2O4/H0.23Li0.77Ti2O4 (SS) one possesses 50-75%.
    After a 24-h UV-Vis light irradiation, the unconverted MB (1-XMB) for the Li2TiO3 is 8% (or 92% conversion) approximately. The Li2TiO3 prepared by the hydrothermal method have better photcatalysis performances with the unconverted MB in the range of 4-21%, while the lithium titianate prepared by the SS method has the performance in the range of 7-51%. However, in seawater, relatively low conversions are found, which may be associated the fact that the mean diameter and polydispersity index of the lithium/protonated titanates in water are greater than those in seawater.
    The lithium titanate ion-sieve catalysts that can also performance photocatalytic splitting of H2O to H2 during the lithium recovery processes has been preliminarily studied, suggesting that it is chemically feasible. It is worth to note that the regenerated Li2TiO3 prepared by the hydrothermal method has better yields of H2. Thus, in the cycles of the Li+ capture and regeneration, the lithium titanate ion-sieves can sustain desirable yields of H2 from photocatalytic splitting of H2O. Proceeding in this fashion, energy required for the lithium recovery processes may be self-supported. In addition, the concept developed in this work may be applied in the photocatalytic degradation of organic pollutants in waste or contaminated underground water. Selected metal ions therein may be captured by ion exchanges with the size-comparable ion-sieves.

    摘要 I ABSTRACT III 誌謝 VI CONTENT VII LIST OF FIGURES X LIST OF TABLES XVII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATUE STUDIES 3 2.1 Recovery of Lithium 3 2.2 Manganese oxide ion sieve spinel 5 2.2.1 Synthesis of Tunnel and Layered Manganese Oxides 7 2.2.2 Solid-State Reactions 10 2.2.3 Extraction/insertion Reactions 10 2.2.4 Ion-sieves 13 2.2.5 Applications as Adsorbents 15 2.3 Ion-sieve Lithium Titanate 18 2.4 Photocatalysis 20 2.4.1 Characteristics of Photocatalysts 20 2.4.2 Photocatalytic Activity of Alkali Titanates 24 2.4.3 Photocatalytic Degradation of Pollutants 27 2.4.4 Photocatalytic Splitting of Water 28 CHAPTER 3 EXPERIMENTAL METHODS 30 3.1 Experimental Procedures 30 3.2 Preparations of Ion-sieves 32 3.3 Recovery of Lithium 33 3.4 Photocatalytic Splitting of Water and Degradation of Methylene Blue 35 3.5 Characterization of Ion-Sieves 37 3.5.1 X-ray Diffraction Spectroscopy 37 3.5.2 Field-emission Scanning Electron Microscopy 37 3.5.3 Fourier Transform Infrared Spectroscopy 37 3.5.4 Thermogravimetric Analysis 37 3.5.5 Solid-State Nuclear Magnetic Resonance Spectroscopy 38 3.5.6 Diffuse Reflectance Ultraviolet-Visible Spectroscopy 38 3.5.7 X-ray Absorption Spectroscopy 38 3.5.8 Brunauer-Emmett-Teller Spectroscopy 40 3.5.9 Inductively Coupled Plasma-mass Spectrometer 40 3.5.10 Dynamic Light Scattering 40 CHAPTER 4 RESULTS AND DISCUSSION 41 4.1 Recovery of Lithium from Seawater Using Lithium Titanium Oxide Ion-sieves Prepared by Solid-state Reaction Method 41 4.2 Recovery of Lithium from Seawater Using Lithium Titanium Oxide Ion-sieves Prepared by the Hydrothermal Method 65 4.3 Photocatalytic Degradation of Methylene Blue with ion-sieves 80 4.4 An Exploratory Research: Photocatalytic Generation of H2 from Seawater during the Lithium Recovery Processes Using the Titanate Ion-sieves 100 CHAPTER 5 CONSLUSIONS 107 REFERENCE 109 APPENDIX 122

    Ammundsen, B., Jones, D. J., Rozière, J., & Burns, G. R. (1996). “Effect of Chemical Extraction of Lithium on the Local Structure of Spinel Lithium Manganese Oxides Determined by X-ray Absorption Spectroscopy”. Chem. Mater., 8(12), 2799-2808.
    Ammundsen, B., Jones, D. J., Roziere, J., & Burns, G. R. (1995). “Mechanism of Proton Insertion and Characterization of the Proton Sites in Lithium Manganate Spinels”. Chem. Mater., 7(11), 2151-2160.
    Antonelli, D. M., Nakahira, A., & Ying, J. Y. (1996). “Ligand-Assisted Liquid Crystal Templating in Mesoporous Niobium Oxide Molecular Sieves”. Inorg. Chem., 35(11), 3126-3136.
    Awano, S., Saiki, A., Tamaura, Y., & Abe, M. (2003). “Synthesis and Ion Exchange Properties of Monoclinic Titanic Acid (H2TiO3)”. J. Ion. Exchange, 14(Supplement), 181-184.
    Balat, M. (2008). “Potential importance of hydrogen as a future solution to environmental and transportation problems”. Int. J. Hydrog. Energy, 33(15), 4013-4029.
    Bamwenda, G. R., Tsubota, S., Nakamura, T., & Haruta, M. (1995). “Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au TiO2 and Pt TiO2”. Journal of Photochemistry and Photobiology A: Chemistry, 89(2), 177-189.
    Benedix, R., Dehn, F., Quaas, J., & Orgass, M. (2000). “Application of titanium dioxide photocatalysis to create self-cleaning building materials”. Lacer, 5, 157-168.
    Brown, M. A., & De Vito, S. C. (1993). “Predicting azo dye toxicity”. Critical Reviews in Environmental Science and Technology, 23(3), 249-324.
    Byrappa, K., & Yoshimura, M. (2012). Handbook of hydrothermal technology: William Andrew.
    Cao, H., & Suib, S. L. (1994). “Highly Efficient Heterogeneous Photooxidation of 2-Propanol to Acetone with Amorphous Manganese Oxide Catalysts”. J. Am. Chem. Soc, 116(12), 5334-5342.
    Cao, J., Wang, A., Yin, H., Shen, L., Ren, M., Han, S., . . . Jiang, T. (2010). “Selective synthesis of potassium titanate whiskers starting from metatitanic acid and potassium carbonate”. Ind. Eng. Chem. Res., 49(19), 9128-9134.
    Chen, X., & Mao, S. S. (2007). “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”. Chemical reviews, 107(7), 2891-2959.
    Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). “Semiconductor-based photocatalytic hydrogen generation”. Chem Rev, 110(11), 6503-6570.
    Chitrakar, R., Kanoh, H., Miyai, Y., & Ooi, K. (2001). “Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4”. Ind. Eng. Chem. Res., 40(9), 2054-2058.
    Chitrakar, R., Kanoh, H., Miyai, Y., & Ooi, K. (2001). “Recovery of lithium from seawater using manganese oxide adsorbent (H1. 6Mn1. 6O4) derived from Li1. 6Mn1. 6O4”. Industrial & engineering chemistry research, 40(9), 2054-2058.
    Chitrakar, R., Makita, Y., Ooi, K., & Sonoda, A. (2014). “Lithium recovery from salt lake brine by H2TiO3”. Dalton Trans., 43(23), 8933-8939.
    Choi, W., Termin, A., & Hoffman, M. R. (1994). ” J. Phys. Chem., 98, 13669.
    David, W. I. F., Thackeray, M. M., Bruce, P. G., & Goodenough, J. B. (1984). “Lithium insertion into βMnO2 and the rutile-spinel transformation”. Mater. Res. Bull., 19(1), 99-106.
    Denisova, T. A., Maksimova, L. G., Polyakov, E. V., Zhuravlev, N. A., Kovyazina, S. A., Leonidova, O. N., . . . Yur’eva, E. I. (2006). “Metatitanic acid: Synthesis and properties”. Russ. J. Inorg. Chem., 51(5), 691-699.
    Farges, F., Brown, G. E., & Rehr, J. (1997). “Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment”. Physical Review B, 56(4), 1809.
    Feng, Q., Kanoh, H., Miyai, Y., & Ooi, K. (1995a). “Alkali Metal Ions Insertion/Extraction Reactions with Hollandite-Type Manganese Oxide in the Aqueous Phase”. Chem. Mater., 7(1), 148-153.
    Feng, Q., Kanoh, H., Miyai, Y., & Ooi, K. (1995b). “Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions”. Chem. Mater., 7(6), 1226-1232.
    Feng, Q., Kanoh, H., Miyai, Y., & Ooi, K. (1995c). “Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase”. Chem. Mater., 7(9), 1722-1727.
    Feng, Q., Kanoh, H., & Ooi, K. (1999). “Manganese oxide porous crystals”. J. Mater. Chem., 9(2), 319-333.
    Feng, Q., Miyai, Y., Kanoh, H., & Ooi, K. (1992). “Lithium(1+) extraction/insertion with spinel-type lithium manganese oxides. Characterization of redox-type and ion-exchange-type sites”. Langmuir, 8(7), 1861-1867.
    Feng, Q., Miyai, Y., Kanoh, H., & Ooi, K. (1993). “Lithium(1+) and magnesium(2+) extraction and lithium(1+) insertion reactions with lithium magnesium manganese oxide (LiMg0.5Mn1.5O4) spinel in the aqueous phase”. Chem. Mater., 5(3), 311-316.
    Fujishima, A., & Honda, K. (1972). “Electrochemical Photolysis of Water at a Semiconductor Electrode”. Nature, 238(5358), 37-38.
    Galinska, A., & Walendziewski, J. (2005). “Photocatalytic water splitting over Pt-TiO2 in the presence of sacrificial reagents”. Energy & Fuels, 19(3), 1143-1147.
    Garrett, D. E. (2004). Handbook of lithium and natural calcium chloride : their deposits, processing, uses and properties (1st ed.). Amsterdam ; Boston: Elsevier Academic Press.
    Giovanoli, R. (1985). “A Review of the Todorokite Buserite Problem - Implications to the Mineralogy of Marine Manganese Nodules - Discussion”. Am. Miner., 70(1-2), 202-204.
    Grätzel, M. (1989). Heterogeneous Photochemical Electron Transfer: CRC Press.
    Grahn, H. T. (1999). Introduction to semiconductor physics: World Scientific.
    Hanley, T. L., Luca, V., Pickering, I., & Howe, R. F. (2002). “Structure of Titania Sol−Gel Films:  A Study by X-Ray Absorption Spectroscopy”. The Journal of Physical Chemistry B, 106(6), 1153-1160.
    Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). “Environmental applications of semiconductor photocatalysis”. Chemical reviews, 95(1), 69-96.
    Hong, H. J., Park, I. S., Ryu, T., Ryu, J., Kim, B. G., & Chung, K. S. (2013). “Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater”. Chem. Eng. J., 234, 16-22.
    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2001). “Photocatalytic degradation pathway of methylene blue in water”. Applied Catalysis B: Environmental, 31(2), 145-157.
    Hsiung, T. L., Wang, H. P., & Wang, H.-C. (2006). “XANES studies of photocatalytic active species in nano TiO2–SiO2”. Radiation Physics and Chemistry, 75(11), 2042-2045.
    Hunter, J. C. (1981). “Preparation of a new crystal form of manganese dioxide: λ-MnO2”. Journal of Solid State Chemistry, 39(2), 142-147.
    Huo, Q., Margolese, D. I., Ciesla, U., Feng, P., Gier, T. E., Sieger, P., . . . Stucky, G. D. (1994). “Generalized synthesis of periodic surfactant/inorganic composite materials”. Nature, 368(6469), 317-321.
    Ikeda, S., Hara, M., Kondo, J. N., Domen, K., Takahashi, H., Okubo, T., & Kakihana, M. (1998). “Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water”. Chem. Mater., 10(1), 72-77.
    Kanoh, H., Feng, Q., Miyai, Y., & Ooi, K. (1995). “Kinetic Properties of a Pt / Lambda ‐ MnO2 Electrode for the Electroinsertion of Lithium Ions in an Aqueous Phase”. Journal of The Electrochemical Society, 142(3), 702-707.
    Kanoh, H., Ooi, K., Miyai, Y., & Katoh, S. (1993). “Electrochemical Recovery of Lithium Ions in the Aqueous Phase”. Sep. Sci. Technol., 28(1-3), 643-651.
    Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). “Formation of titanium oxide nanotube”. Langmuir, 14(12), 3160-3163.
    Kato, H., Asakura, K., & Kudo, A. (2003). “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure”. J. Am. Chem. Soc, 125(10), 3082-3089.
    Kim, H. G., Hwang, D. W., Bae, S. W., Jung, J. H., & Lee, J. S. (2003). “Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method”. Catalysis letters, 91(3-4), 193-198.
    Kleykamp, H. (2002). “Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3”. Fusion Eng. Des., 61–62(0), 361-366.
    Koksbang, R., Barker, J., Shi, H., & Saïdi, M. Y. (1996). “Cathode materials for lithium rocking chair batteries”. Solid State Ion., 84(1–2), 1-21.
    Konstantinou, I. K., & Albanis, T. A. (2004). “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review”. Applied Catalysis B: Environmental, 49(1), 1-14.
    Kudo, A., Kato, H., & Nakagawa, S. (2000). “Water splitting into H2 and O2 on new Sr2M2O7 (M= Nb and Ta) photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity”. The Journal of Physical Chemistry B, 104(3), 571-575.
    Kudo, A., & Kondo, T. (1997). “Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n=2, 5, 6)”. J. Mater. Chem., 7(5), 777-780.
    Kudo, A., & Miseki, Y. (2009). “Heterogeneous photocatalyst materials for water splitting”. Chemical Society Reviews, 38(1), 253-278.
    Laumann, A., Fehr, K. T., Wachsmann, M., Holzapfel, M., & Iversen, B. B. (2010). “Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions - Its stability and structural properties”. Solid State Ion., 181(33-34), 1525-1529.
    Laumann, A., Fehr, K. T., Wachsmann, M., Holzapfel, M., & Iversen, B. B. (2010). “Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions — Its stability and structural properties”. Solid State Ion., 181(33–34), 1525-1529.
    Laumann, A., Jensen, Ø., Marie, K., Tyrsted, C., Bremholm, M., Fehr, K. T., . . . Iversen, B. B. (2011). “In‐situ Synchrotron X‐ray Diffraction Study of the Formation of Cubic Li2TiO3 Under Hydrothermal Conditions”. European Journal of Inorganic Chemistry, 2011(14), 2221-2226.
    Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”. Chemical Reviews, 95(3), 735-758.
    Liu, Y.-F., Feng, Q., & Ooi, K. (1994). “Li+ Extraction/Insertion Reactions with LiAlMnO4 and LiFeMnO4 Spinels in the Aqueous Phase”. Journal of Colloid and Interface Science, 163(1), 130-136.
    Marcus, Y. (1991). “Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K”. Journal of the Chemical Society, Faraday Transactions, 87(18), 2995-2999.
    Masaki, N., Uchida, S., Yamane, H., & Sato, T. (2002). “Characterization of a New Potassium Titanate, KTiO2(OH) Synthesized via Hydrothermal Method”. Chem. Mater., 14(1), 419-424.
    Mozia, S., Toyoda, M., Inagaki, M., Tryba, B., & Morawski, A. W. (2007). “Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor”. Journal of hazardous materials, 140(1), 369-375.
    Nada, A., Barakat, M., Hamed, H., Mohamed, N., & Veziroglu, T. (2005). “Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts”. Int. J. Hydrog. Energy, 30(7), 687-691.
    Ni, M., Leung, M. K., Leung, D. Y., & Sumathy, K. (2007). “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production”. Renewable and Sustainable Energy Reviews, 11(3), 401-425.
    Ooi, K., Miyai, Y., & Katoh, S. (1986). “Recovery of Lithium from Seawater by Manganese Oxide Adsorbent”. Sep. Sci. Technol., 21(8), 755-766.
    Ooi, K., Miyai, Y., & Katoh, S. (1987). “Ion-Exchange Properties of lon-Sieve-Type Manganese Oxides Prepared by Using Different Kinds of Introducing Ions”. Sep. Sci. Technol., 22(7), 1779-1789.
    Ooi, K., Miyai, Y., Katoh, S., Maeda, H., & Abe, M. (1988). ” Bull. Chem. Soc. Jpn., 61(null), 407.
    Ooi, K., Miyai, Y., Katoh, S., Maeda, H., & Abe, M. (1989). ” Langmuir, 5(null), 150.
    Ooi, K., Miyai, Y., Katoh, S., Maeda, H., & Abe, M. (1989). “Topotactic lithium(1+) insertion to .lambda.-manganese dioxide in the aqueous phase”. Langmuir, 5(1), 150-157.
    Ooi, K., Miyai, Y., Katoh, S., Maeda, H., & Abe, M. (1990). “Analysis of pH titration data in a .lambda.-manganese dioxide + lithium hydroxide system on the basis of redox mechanism”. Langmuir, 6(1), 289-291.
    Ooi, K., Miyai, Y., & Sakakihara, J. (1991). “Mechanism of lithium(1+) insertion in spinel-type manganese oxide. Redox and ion-exchange reactions”. Langmuir, 7(6), 1167-1171.
    Pasta, M., Battistel, A., & La Mantia, F. (2012). “Batteries for lithium recovery from brines”. Energy Environ. Sci., 5(11), 9487-9491.
    Pauwels, H., Brach, M., & Fouillac, C. (1995). “Study of Li+ adsorption onto polymeric aluminium (III) hydroxide for application in the treatment of geothermal waters”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 100(0), 73-82.
    Potter, R. M., & Rossman, G. R. (1979). “The tetravalent manganese oxides; identification, hydration, and structural relationships by infrared spectroscopy”. Am. Miner., 64(11-12), 1199-1218.
    Ravel, B., & Newville, M. (2005). “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT”. Journal of synchrotron radiation, 12(Pt 4), 537-541.
    Ryu, T., Ryu, J. C., Shin, J., Lee, D. H., Kim, Y. H., & Chung, K.-S. (2013). “Recovery of lithium by an electrostatic field-assisted desorption process”. Ind. Eng. Chem. Res., 52(38), 13738-13742.
    Ryu, T., Shin, J., Lee, D. H., Kim, Y. H., & Chung, K. S. (2013). “Recovery of Lithium by an Electrostatic Field-Assisted Desorption Process”. Ind. Eng. Chem. Res., 52(38), 13738-13742.
    Ryu, T., Shin, J., Ryu, J., Park, I., Hong, H., Kim, B. G., & Chung, K. S. (2013). “Preparation and Characterization of a Cylinder-Type Adsorbent for the Recovery of Lithium from Seawater”. Mater. Trans., 54(6), 1029-1033.
    Sasaki, T., Kooli, F., Iida, M., Michiue, Y., Takenouchi, S., Yajima, Y., . . . Watanabe, M. (1998). “A Mixed Alkali Metal Titanate with the Lepidocrocite-like Layered Structure. Preparation, Crystal Structure, Protonic Form, and Acid−Base Intercalation Properties”. Chem. Mater., 10(12), 4123-4128.
    Sato, K., Poojary, D. M., Clearfield, A., Kohno, M., & Inoue, Y. (1997). “The Surface Structure of the Proton-Exchanged Lithium Manganese Oxide Spinels and Their Lithium-Ion Sieve Properties”. Journal of Solid State Chemistry, 131(1), 84-93.
    Sato, T., Yamamoto, Y., Fujishiro, Y., & Uchida, S. (1996). “Intercalation of iron oxide in layered H2Ti4O9 and H4Nb6O17: visible-light induced photocatalytic properties”. Journal of the Chemical Society, Faraday Transactions, 92(24), 5089-5092.
    Sayama, K., & Arakawa, H. (1996). “Effect of carbonate addition on the photocatalytic decomposition of liquid water over a ZrO2 catalyst”. Journal of Photochemistry and Photobiology A: Chemistry, 94(1), 67-76.
    Schumm, B., Joseph, H. M., Kozawa, A., & Office, E. S. I. C. S. (1980). Proceedings of the Manganese Dioxide Symposium: Electrochemical Society.
    Shen, X.-M., & Clearfield, A. (1986). “Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide”. Journal of Solid State Chemistry, 64(3), 270-282.
    Shen, Y. F., Zerger, R. P., DeGuzman, R. N., Suib, S. L., McCurdy, L., Potter, D. I., & O'Young, C. L. (1993). “Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications”. Science, 260(5107), 511-515.
    Shi, X. C., Zhang, Z. B., Zhou, D. F., Zhang, L. F., Chen, B. Z., & Yu, L. L. (2013). “Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties”. Trans. Nonferrous Met. Soc. China, 23(1), 253-259.
    Shibata, M., Kudo, A., Tanaka, A., Domen, K., Maruya, K.-i., & Onishi, T. (1987). “Photocatalytic Activities of Layered Titanium Compounds and Their Derivatives for H2 Evolution from Aqueous Methanol Solution”. Chemistry Letters, 16(6), 1017-1018.
    Slokar, Y. M., & Le Marechal, A. M. (1998). “Methods of decoloration of textile wastewaters”. Dyes and pigments, 37(4), 335-356.
    Song, H. Y., Jiang, H. F., Liu, T., Liu, X. Q., & Meng, G. Y. (2007). “Preparation and photocatalytic activity of alkali titanate nano materials A(2)Ti(n)O(2n+1) (A = Li, Na and K)”. Mater. Res. Bull., 42(2), 334-344.
    Sreethawong, T., & Yoshikawa, S. (2006). “Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol–gel process with surfactant template”. Int. J. Hydrog. Energy, 31(6), 786-796.
    Stouff, P., & Boulegue, J. (1988). “Synthetic 10-A and 7-A Phyllomanganates - Their Structures as Determined by Exafs”. Am. Miner., 73(9-10), 1162-1169.
    Tarakina, N. V., Neder, R. B., Denisova, T. A., Maksimova, L. G., Baklanova, Y. V., Tyutyunnik, A. P., & Zubkov, V. G. (2010). “Defect crystal structure of new TiO(OH)2 hydroxide and related lithium salt Li2TiO3”. Dalton Trans., 39(35), 8168-8176.
    Thackeray, M. M., de Kock, A., Rossouw, M. H., Liles, D., Bittihn, R., & Hoge, D. (1992). “Spinel Electrodes from the Li‐Mn‐O System for Rechargeable Lithium Battery Applications”. Journal of The Electrochemical Society, 139(2), 363-366.
    Tomiha, M., Masaki, N., Uchida, S., & Sato, T. (2002). “Hydrothermal synthesis of alkali titanates from nano size titania powder”. Journal of Materials Science, 37(11), 2341-2344.
    Tsuji, M., & Abe, M. (2007). “Synthetic Inorganic Ion-Exchange Materials Xxxvi. Synthesis of Cryptomelane-Type Hydrous Manganese Dioxide as an Ion-Exchange Material and Their Ion-Exchange Selectivities Towards Alkali and Alkaline Earth Metal Ions”. Solvent Extr. Ion Exch., 2(2), 253-274.
    Turner, S., & Buseck, P. R. (1981). “Todorokites: A New Family of Naturally Occurring Manganese Oxides”. Science, 212(4498), 1024-1027.
    Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K., & Ooi, K. (2002). “Preparation and adsorptive properties of membrane-type adsorbents for lithium recovery from seawater”. Ind. Eng. Chem. Res., 41(17), 4281-4287.
    Verma, A. K., Dash, R. R., & Bhunia, P. (2012). “A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters”. Journal of Environmental Management, 93(1), 154-168.
    Vijayakumar, M., Kerisit, S., Yang, Z., Graff, G. L., Liu, J., Sears, J. A., . . . Hu, J. (2009). “Combined 6, 7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3”. The Journal of Physical Chemistry C, 113(46), 20108-20116.
    Vogelpohl, A., & Kim, S. M. (2004). “Advanced oxidation processes (AOPs) in wastewater treatment”. J Ind Eng Chem, 10(1), 33-40.
    Wadsley, A. (1953). “The crystal structure of psilomelane, (Ba, H2O)2Mn5O10”. Acta Crystallographica, 6(6), 433-438.
    Wang, L., Meng, C. G., Han, M., & Ma, W. (2008). “Lithium uptake in fixed-pH solution by ion sieves”. Journal of Colloid and Interface Science, 325(1), 31-40.
    Wilke, K., & Breuer, H. (1999). “The influence of transition metal doping on the physical and photocatalytic properties of titania”. Journal of Photochemistry and Photobiology A: Chemistry, 121(1), 49-53.
    Wu, W., Liang, S., Chen, Y., Shen, L., Yuan, R., & Wu, L. (2013). “Mechanism and improvement of the visible light photocatalysis of organic pollutants over microcrystalline AgNbO 3 prepared by a sol–gel method”. Mater. Res. Bull., 48(4), 1618-1626.
    Xiang, H., Tian, B., Lian, P., Li, Z., & Wang, H. (2011). “Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries”. J. Alloy. Compd., 509(26), 7205-7209.
    Xiao, G. P., Tong, K. F., Zhou, L. S., Xiao, J. L., Sun, S. Y., Li, P., & Yu, J. G. (2012). “Adsorption and Desorption Behavior of Lithium Ion in Spherical PVC-MnO2 Ion Sieve”. Ind. Eng. Chem. Res., 51(33), 10921-10929.
    Xu, A.-W., Gao, Y., & Liu, H.-Q. (2002). “The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles”. Journal of Catalysis, 207(2), 151-157.
    Yang, L. H., Dong, C., & Guo, J. (2008). “Hybrid microwave synthesis and characterization of the compounds in the Li–Ti–O system”. Journal of Power Sources, 175(1), 575-580.
    Yang, X., Kanoh, H., Tang, W., & Ooi, K. (2000). “Synthesis of Li1.33Mn1.67O4 spinels with different morphologies and their ion adsorptivities after delithiation”. J. Mater. Chem., 10(8), 1903-1909.
    Zhang, L., Wang, X., Noguchi, H., Yoshio, M., Takada, K., & Sasaki, T. (2004). “Electrochemical and ex situ XRD investigations on (1−x)LiNiO2·xLi2TiO3 (0.05≤x≤0.5)”. Electrochimica Acta, 49(20), 3305-3311.
    Zhang, Q. H., Sun, S. Y., Li, S. P., Yin, X. S., & Yu, J. G. (2009). “Direct Hydrothermal Synthesis of Ternary Li‐Mn‐O Oxide Ion‐Sieves”. Annals of the New York Academy of Sciences, 1161(1), 500-507.

    下載圖示 校內:2020-08-28公開
    校外:2020-08-28公開
    QR CODE