簡易檢索 / 詳目顯示

研究生: 林彥妤
Lin, Yen-yu
論文名稱: 利用影子價格衡量可更新能源價值
Valuation of Renewable Energy: The Shadow Prices Approach
指導教授: 耿伯文
Kreng, Victor B.
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 距離函數生命週期成本影子價格可更新能源
外文關鍵詞: Life cycle cost, Renewable energies, Distance function, Shadow price
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全球所面對的嚴峻考驗之一為氣候的改變。人類使用石化碳氫化合物能源是氣候改變的主要原因。因此,考慮使用可更新能源或投資可更新能源對於政府、消費者、投資者而言是相當重要性的議題。尤其是在未來能源的需求以及人口成長的速度將會耗盡地球上有限的石油、天然氣、煤。

    本研究主要探討可更新能源的真實價值。研究中使用了環境構面與經濟構面的概念去建立本研究的模型。而在模型中使用生命週期成本概念結合影子價格的方法去建立鑑價模型,將使用此模型去顯示出可更新能源的真實價值。而在模型中也可以提供投資者以及消費者一個能源比較的標準,因為研究中以二氧化碳排放作為非欲意產出為概念。針對不同的能源供應商而言,模型使用距離函數去計算不同公司與不同能源間的生產效率與影子價格。根據影子價格的計算與生產效率的比較,本研究可以提供較多元的能源資訊與建議給顧客、供應商以及政府。

    The climate change is one of the most difficult challenges facing the world today. Burning the fossil hydrocarbon energies is the main reason of anthropogenic climate change. Hence, consider using renewable energies toward governments, consumers and suppliers are important. Especially the energy demand and population growth are exhausting the world’s supplies of oil, gas and coal.

    The research is mainly discussing the value of renewable energies. It includes the environmental and economic concept to construct the model. The model use life cycle cost concept combined shadow prices approach to reveal renewable energies realistic value. It can also provide a comparison standard which including undesirable outputs for consumers and decision- makers. Toward different energies suppliers, it use distance function to measure production inefficiency between energies. According to different shadow prices and production inefficiency, it can provide broader energies information for consumers, suppliers and governments.

    Table of Contents Chapter 1 IntroductionU 1 1.1 Research Background and MotivationU 1 1.2 Research ObjectivesU 2 1.3 Research Scope and RestrictionU 3 1.4 Research FlowU 4 Chapter 2 Literature ReviewU 5 2.1 Review of energyU 5 2.1.1 Definition of energyU 5 2.1.2 Environmental impacts from energyU 6 2.2 Valuation of energyU 7 2.2.1 Financial option theory-portfolio analysisU 7 2.2.2 Emergy analysisU 8 2.2.3 Economics approachU 9 2.3 Shadow pricesU 12 2.3.1 Shadow prices modelU 12 2.3.2 Application of shadow pricesU 14 2.4 Distance functionU 16 2.4.1 Definition of distance functionU 16 2.4.2 Estimation methods of distance functionU 19 Chapter 3 Building the Frontier model of valuing Renewable energiesU 22 3.1 Framework of ModelU 22 3.2 Model ConstructionU 23 3.2.1 The directional output distance functionU 23 3.2.2 Shadow pricing modelU 26 3.2.3 Life cycle costU 29 3.2.4 The quadratic functional formU 30 3.2.5 Linear programmingU 32 Chapter 4 Case StudiesU 33 4.1 Characteristics of Energy Industry in U.S.U 33 4.2 The Study of the energy industry in directional distance function modelU 34 4.2.1 The production efficiency in different companiesU 37 4.2.2 The production efficiency in different stage of life cycleU 43 4.3 Valuation of renewable energyU 44 4.4 DiscussionU 46 Chapter 5 Conclusion and suggestionU 47 5.1 ConclusionU 47 5.2 SuggestionU 48 UReferenceU 49 List of Tables Table 2-1 Summarize the renewable energy studiesU 11 Table 2-2 Application of Shadow pricesU 15 Table 4-1 Renewable energy company statistics data in millionsU 35 Table 4-2 Energy industry in U.S. statistics data in millionsU 35 Table 4-3 Parameter estimates for entire energy industryU 35 Table 4-4 Parameter estimates for renewable energy companiesU 36 Table 4-7 Share of primary energy from renewables 45 List of Figures Figure 1-1 Research FlowU 4 Figure 2-1 The input distance functionU 17 Figure 2-2 The output distance functionU 18 Figure 3-1 The Framework of ResearchU 22 Figure 3-2 The output distance function.U 25 Figure 4-1 U.S. Energy Consumption by Energy Source, 2003-2007U 34 Figure 4-2 Energy company production efficiencyU 37 Figure 4-3 Renewable energy company production efficiencyU 38 Figure 4-4 Scenario 1U 39 Figure 4-5 Scenario 2U 40 Figure 4-6 Scenario 3U 41 Figure 4-7 Scenario 4U 41 Figure 4-8 Scenario 5U 42 Figure 4-9 Scenario 6U 42 Figure 4-10 Renewable energy production efficiency in different stage of timeU 44 Figure 4-11 Production efficiency in different energy in different stage of timeU 44 Figure 4-11 The shadow price of different energyU 45

    Aguado, M., Ayerbe, E., Azcarate, C., Blanco, R., Garde, R., Mallor, F., et al. (2009). Economical assessment of a wind-hydrogen energy system using WindHyGen?software. International Journal of Hydrogen Energy, 34(7), 2845-2854.
    Aigner, D. J., & Chu, S. F. (1968). On Estimating the Industry Production Function. The American Economic Review, 58(4), 826-839.
    Bolinger, M., Wiser, R., Bachrach, D., & Golove, W. (2002). Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices, United States.
    Brown, M. T., & Ulgiati, S. (1999). Emergy evaluation of the biosphere and natural capital. [Article]. Ambio, 28(6), 486-493.
    Brown, M. T., & Ulgiati, S. (2002). Emergy evaluations and environmental loading of electricity production systems. Journal of Cleaner Production, 10(4), 321-334.
    Brown, S. P. A., & Huntington, H. G. (2008). Energy security and climate change protection: Complementarity or tradeoff? Energy Policy, 36(9), 3510-3513.
    Chambers, R. G., Chung, Y., & Fare, R. (1996). Benefit and Distance Functions. Journal of Economic Theory, 70(2), 407-419.
    Coelli, T., & Perelman, S. (1999). A comparison of parametric and non-parametric distance functions: With application to European railways. European Journal of Operational Research, 117(2), 326-339.
    Coelli, T., Rao, D. S. P., & Battese., G. E. (1998). An introduction to efficiency and productivity analysis Boston: Kluwer Academic Publishers.
    Dincer, I. (1999). Environmental impacts of energy. Energy Policy, 27(14), 845-854.
    Dincer, I., & Rosen, M. A. (1998). A worldwide perspective on energy, environment and sustainable development. [Article]. International Journal of Energy Research, 22(15), 1305-1321.
    Dincer, I., & Rosen, M. A. (1999). Energy, environment and sustainable development. [Article]. Applied Energy, 64(1-4), 427-440.
    Dismukes, J. P., Miller, L. K., & Bers, J. A. (2009). The industrial life cycle of wind energy electrical power generation ARI methodology modeling of life cycle dynamics. [Article]. Technological Forecasting and Social Change, 76(1), 178-191.
    El-Kordy, M. N., Badr, M. A., Abed, K. A., & Ibrahim, S. M. A. (2002). Economical evaluation of electricity generation considering externalities. Renewable Energy, 25(2), 317-328.
    Färe, R., & Grosskopf, S. (1990). A distance function approach to price efficiency. Journal of Public Economics, 43(1), 123-126.
    Färe, R., Grosskopf, S., Lovell, C., & Pasurka, C. (1998). Multilateral productivity comparsions when some outputs are undesirable: a nonparametric approach. Review of Economics & Statistics, 71(1), 90-98.
    Färe, R., Grosskopf, S., Lovell, C. A. K., & Yaisawarng, S. (1993). Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach. The Review of Economics and Statistics, 75(2), 374-380.
    Färe, R., Grosskopf, S., Noh, D.-W., & Weber, W. (2005). Characteristics of a polluting technology: theory and practice. Journal of Econometrics, 126(2), 469-492.
    Färe, R., Grosskopf, S., & Weber, W. L. (2006). Shadow prices and pollution costs in U.S. agriculture. Ecological Economics, 56(1), 89-103.
    Färe, R., & Primont, D. (1995). Multi-output production and duality :theory and applications Boston: Kluwer Academic Publishers.
    Grosskopf, S., Hayes, K. J., Taylor, L. L., & Weber, W. L. (1997). Budget-Constrained Frontier Measures of Fiscal Equality and Efficiency in Schooling. The Review of Economics and Statistics, 79(1), 116-124.
    Holden, E., & Hoyer, K. G. (2005). The ecological footprints of fuels. Transportation Research Part D: Transport and Environment Retrieved 5, 10
    Jenerette, G. D., Marussich, W. A., & Newell, J. P. (2006). Linking ecological footprints with ecosystem valuation in the provisioning of urban freshwater. Ecological Economics, 59(1), 38-47.
    Jeong, K. S., & Oh, B. S. (2002). Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. [Article]. Journal of Power Sources, 105(1), 58-65.
    Khan, K. H., Rasul, M. G., & Khan, M. M. K. (2004). Energy conservation in buildings: cogeneration and cogeneration coupled with thermal energy storage. Applied Energy, 77(1), 15-34.
    Kumbaroglu, G. k., Madlener, R., & Demirel, M. (2008). A real options evaluation model for the diffusion prospects of new renewable power generation technologies. Energy Economics, 30(4), 1882-1908.
    Kumbhakar, S. C., & Lovell, C. A. K. (2000). Stochastic frontier analysis Cambridge [England]: Cambridge University Press.
    Lee, J.-D., Park, J.-B., & Kim, T.-Y. (2002). Estimation of the shadow prices of pollutants with production/environment inefficiency taken into account: a nonparametric directional distance function approach. Journal of Environmental Management, 64(4), 365-375.
    Lee, M. (2005). The shadow price of substitutable sulfur in the US electric power plant: A distance function approach. [Article]. Journal of Environmental Management, 77(2), 104-110.
    Lutz, J., Lekov, A., Chan, P., Whitehead, C. D., Meyers, S., & McMahon, J. (2006). Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers. Energy, 31(2-3), 311-329.
    Martin, J. F. (2002). Emergy valuation of diversions of river water to marshes in the Mississippi River Delta. Ecological Engineering, 18(3), 265-286.
    Martinot, E., Dienst, C., Weiliang, L., & Qimin, C. (2007). Renewable energy futures: Targets, scenarios, and pathways. [Review]. Annual Review of Environment and Resources, 32, 205-239.
    Midilli, A., Dincer, I., & Ay, M. (2006). Green energy strategies for sustainable development. Energy Policy, 34(18), 3623-3633.
    Murty, M. N., Kumar, S., & Paul, M. (2006). Environmental regulation, productive efficiency and cost of pollution abatement: a case study of the sugar industry in India. Journal of Environmental Management, 79(1), 1-9.
    O'Donnell, C. J., & Coelli, T. J. (2005). A Bayesian approach to imposing curvature on distance functions. Journal of Econometrics, 126(2), 493-523.
    Oh Sang Kwon, H. L. (2004). Productivity improvement in Korean rice farming: parametric and non-parametric analysis. Australian Journal of Agricultural & Resource Economics, 48(2), 323-346.
    Omer, A. M. (2008). Green energies and the environment. Renewable and Sustainable Energy Reviews, 12(7), 1789-1821.
    Pehnt, M. (2006). Dynamic life cycle assessment (LCA) of renewable energy technologies. Renewable Energy, 31(1), 55-71.
    Pulselli, R. M., Pulselli, F. M., & Rustici, M. (2008). Emergy accounting of the Province of Siena: Towards a thermodynamic geography for regional studies. Journal of Environmental Management, 86(2), 342-353.
    Quadrelli, R., & Peterson, S. (2007). The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion. Energy Policy, 35(11), 5938-5952.
    Schneider, D. R., Duic, N., & Bogdana, Z. (2007). Mapping the potential for decentralized energy generation based on renewable energy sources in the Republic of Croatia. [Article]. Energy, 32(9), 1731-1744.
    Shephard, R. W. (1970). Theory of cost and production functions (Princeton University Press).
    Song, C. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115(1-4), 2-32.
    Toloo, M. (2006). Comment on "A comparison of parametric and non-parametric distance functions (by Tim Coelli and Sergio Perelman)". European Journal of Operational Research, 171(1), 344-345.
    Tolvanen, J. (2007). Life cycle energy cost savings through careful system design and pump selection. World Pumps, 2007(490), 34, 36-37.
    Twidell, J., & Weir, T. (2006). Renewable energy resources. London: Taylor & Francis.
    UNFCC (1997 ). Kyoto Protocol
    Venetsanos, K., Angelopoulou, P., & Tsoutsos, T. (2002). Renewable energy sources project appraisal under uncertainty: the case of wind energy exploitation within a changing energy market environment. Energy Policy, 30(4), 293-307.

    無法下載圖示 校內:2108-07-15公開
    校外:2108-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE