簡易檢索 / 詳目顯示

研究生: 蘇冠琳
Su, Guan-Lin
論文名稱: 探討錐形血管結構於乳腺腫瘤球侵襲模式之效應
Engineering a tapered vascular structure for studying the invasive pattern of breast tumor spheroids
指導教授: 涂庭源
Tu, Ting-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 35
中文關鍵詞: 癌症轉移外滲循環腫瘤細胞簇腫瘤球微流體體外血管模型漸縮血管共培養
外文關鍵詞: cancer metastasis, extravasation, microfluidics, circulating tumor microemboli, breast tumor spheroids, in vitro blood vessel model, tapered blood vessel, co-culture
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症在全球是導致人們死亡的重要疾病之一。在整個病程中,癌症轉移導致了90%癌症病患的死亡,癌細胞從原發腫瘤入侵血管後藉由體內的血液循環系統轉移至其它器官或身體部位,在癌症轉移的進展中,循環腫瘤細胞簇(Circulating tumor microemboli, CTM)起著至關重要的作用,通過血管或微血管中的滾動黏附(rolling-adhesion)或物理閉塞(physical occlusion)來造成癌細胞外滲(extravasation)達到癌症二次轉移,形成繼發性腫瘤。雖然 CTM 很少發生,但其高轉移潛力與疾病的進展相關。在此研究中,我們建立一個微流體漸縮血管模型對CTM遭遇物理閉塞之轉移現象進行模擬。首先,我們透過探針預放入於微流體通道,內涵未聚合的纖維蛋白與膠原蛋白水凝膠,在等待其固化後產生直徑由600 µm漸縮最小至70 µm的錐形通道,爾後在管腔內側接種人類臍靜脈內皮細胞(Human Umbilical Vein Endothelial Cells, HUVECs)形成一漸縮血管之結構。藉由加入螢光標記物(分子量70kDa之FITC-dextran)比較漸縮血管與中空結構的通透性,結果顯示漸縮血管具有滲透性為5.5 x 10-7 cm/s之良好的屏障功能。通過培養乳癌腫瘤球體建立CTM模型並將其放入由血管內皮所形成的錐形漸縮血管中觀察細胞球在不同位置上所表現的行為。研究結果顯示,細胞球在越小的管徑中,可以引發癌細胞產生ㄧ較多絲狀偽足(filopodia)之結構與較侵襲之現象。本研究建構之微流體漸縮血管模型預期可以為癌細胞於轉移時所遭遇之物理閉塞過程提供更進一步的了解。

    Cancer is one of the most lethal diseases, causing millions of deaths worldwide. Cancer metastasis is the cause of death in 90% of cancer patients. Circulating tumor microemboli (CTMs) in cancer metastasis are believed to play a vital role in the progression of cancer metastasis. The mechanisms of CTM extravasation are believed to be dependent on rolling adhesion and physical occlusion in blood vessels or capillaries. Although CTMs rarely occur, studies have shown that their high metastatic potential is related to disease progression. In this study, a microfluidic vessel-on-a-chip model was established to simulate the mode of CTM migration in a blood vessel. In this thesis, we placed the probe needle in a microfluidic channel containing unpolymerized hydrogel (fibrin/collagen type I) in advance and waited for polymerization. This method can form a tapered channel with a diameter varying from 600 µm to a minimum of 70 µm, and human umbilical vein endothelial cells (HUVECs) can be loaded into the lumen to form an in vitro tapered vascular model. Adding a fluorescent marker (FITC-dextran with a molecular weight of 70 kDa) to compare the permeability of the tapered vessel and the empty lumen showed that the tapered vessel performs a good barrier function with the permeability at 5.5 x 10-7 cm/s. The CTM was established by culturing breast tumor spheroids and placing them in the tapered blood vessel formed by vascular endothelium to observe the behavior of the spheroids at different positions. The results of the study show that the smaller the diameter of the cell spheroid is, the more aggressive the cancer cells are with pronounced filopodia formation. This microfluidic vessel-on-a-chip model is believed to provide insights in the role of occluded CTM in potentiating the process of cancer metastasis.

    摘要 I Abstract II 誌謝 III Contents V List of Figures VII List of Abbreviations X Chapter 1 Introduction 1 1.1 Background 1 1.2 Metastasis and extravasation 3 1.3 Microfluidic techniques 6 1.4 In vitro cell extravasation model 7 1.5 Aims of the research 9 Chapter 2 Materials and Methods 11 2.1 Experimental workflows 11 2.2 Cell culture 12 2.3 Breast tumor spheroids 12 2.4 Microfluidic device fabrication 13 2.5 Hydrogel preparation 15 2.6 Device operation for downstream cellular experiment 15 2.7 Immunofluorescent staining and imaging 17 2.7.1 HUVEC channel staining 17 2.7.2 Cell tracking staining 18 2.8 Imaging and image analysis 19 2.8.1 Measurement of lumen diameter 19 2.8.2 Permeability measurements 19 2.9 Statistical analysis 20 Chapter 3 Results 21 3.1 Influence of different hydrogels on the in vitro vessel model phenotype 21 3.2 Lumen diameter analysis 23 3.3 HUVEC channel formation immunofluorescence staining 25 3.4 Diffusion permeability coefficient 26 3.5 HUVEC channel coculture with breast tumor spheroids 28 Chapter 4 Conclusions 32 References 33

    [1] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer Statistics, 2021,” CA. Cancer J. Clin., vol. 71, no. 1, pp. 7–33, 2021.
    [2] S. Valastyan and R. A. Weinberg, “Tumor metastasis: molecular insights and evolving paradigms.,” Cell, vol. 147, no. 2, pp. 275–92, 2011.
    [3] D. Hanahan and R. A. A. Weinberg, Hallmarks of cancer: The next generation, vol. 144, no. 5. 2011, pp. 646–674.
    [4] A. B. Al-Mehdi, K. Tozawa, A. B. Fisher, L. Shientag, A. Lee, and R. J. Muschel, “Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis,” Nat. Med. 2000 61, vol. 6, no. 1, pp. 100–102, 2000.
    [5] L. A. Hapach, J. A. Mosier, W. Wang, and C. A. Reinhart-King, “Engineered models to parse apart the metastatic cascade,” npj Precis. Oncol. 2019 31, vol. 3, no. 1, pp. 1–8, 2019.
    [6] A. Richmond and Y. Su, “Mouse xenograft models vs GEM models for human cancer therapeutics,” Dis. Model. Mech., vol. 1, no. 2–3, pp. 78–82, 2008.
    [7] K. Stoletov et al., “Visualizing extravasation dynamics of metastatic tumor cells,” J. Cell Sci., vol. 123, no. 13, pp. 2332–2341, 2010.
    [8] K. H. Benam et al., “Engineered In Vitro Disease Models,” http://dx.doi.org/10.1146/annurev-pathol-012414-040418, vol. 10, pp. 195–262, 2015.
    [9] C. P. Day, G. Merlino, and T. Van Dyke, “Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges,” Cell, vol. 163, no. 1, pp. 39–53, 2015.
    [10] G. Caponigro and W. R. Sellers, “Advances in the preclinical testing of cancer therapeutic hypotheses,” Nat. Rev. Drug Discov. 2011 103, vol. 10, no. 3, pp. 179–187, 2011.
    [11] F. Klemm and J. A. Joyce, “Microenvironmental regulation of therapeutic response in cancer,” Trends Cell Biol., vol. 25, no. 4, pp. 198–213, 2015.
    [12] M. F. Coughlin and R. D. Kamm, “The Use of Microfluidic Platforms to Probe the Mechanism of Cancer Cell Extravasation,” Adv. Healthc. Mater., vol. 9, no. 8, p. 1901410, 2020.
    [13] E. Sahai and C. J. Marshall, “Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis,” Nat. Cell Biol. 2003 58, vol. 5, no. 8, pp. 711–719, 2003.
    [14] G. Follain et al., “Fluids and their mechanics in tumour transit: shaping metastasis,” Nat. Rev. Cancer 2019 202, vol. 20, no. 2, pp. 107–124, 2019.
    [15] N. Reymond, B. B. d’Água, and A. J. Ridley, “Crossing the endothelial barrier during metastasis,” Nat. Rev. Cancer 2013 1312, vol. 13, no. 12, pp. 858–870, 2013.
    [16] M. B. Chen, J. A. Whisler, J. Fröse, C. Yu, Y. Shin, and R. D. Kamm, “On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics,” Nat. Protoc. 2017 125, vol. 12, no. 5, pp. 865–880, 2017.
    [17] N. Aceto et al., “Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis,” Cell, vol. 158, no. 5, pp. 1110–1122, 2014.
    [18] M. Yu et al., “Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition,” Science (80-. )., vol. 339, no. February, pp. 580–584, 2013.
    [19] K. J. Cheung et al., “Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters,” Proc. Natl. Acad. Sci., vol. 113, no. 7, pp. E854–E863, 2016.
    [20] S. H. Au et al., “Clusters of circulating tumor cells traverse capillary-sized vessels,” Proc. Natl. Acad. Sci., vol. 113, no. 18, pp. 4947–4952, 2016.
    [21] N. Peela et al., “Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis,” Biomaterials, vol. 133. Elsevier Ltd, pp. 176–207, Jul. 01, 2017.
    [22] K. M. Chrobak, D. R. Potter, and J. Tien, “Formation of perfused, functional microvascular tubes in vitro,” Microvasc. Res., vol. 71, no. 3, pp. 185–196, 2006.
    [23] K. C. Chaw, M. Manimaran, E. H. Tay, and S. Swaminathan, “Multi-step microfluidic device for studying cancer metastasis,” Lab Chip, vol. 7, no. 8, pp. 1041–1047, 2007.
    [24] J. W. Song et al., “Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells,” PLoS One, vol. 4, no. 6, p. e5756, 2009.
    [25] I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, “Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function,” Proc. Natl. Acad. Sci., vol. 109, no. 34, pp. 13515–13520, 2012.
    [26] Qian Zhang, Tingjiao Liu, and Jianhua Qin, “A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime,” Lab Chip, vol. 12, no. 16, pp. 2837–2842, 2012.
    [27] A. Boussommier-Calleja, Y. Atiyas, K. Haase, M. Headley, C. Lewis, and R. D. Kamm, “The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model,” Biomaterials, vol. 198, pp. 180–193, 2019.
    [28] K.-W. Wu, C.-T. Kuo, and T.-Y. Tu, “A Highly Reproducible Micro U-Well Array Plate Facilitating High-Throughput Tumor Spheroid Culture and Drug Assessment,” Glob. Challenges, vol. 5, no. 2, p. 2000056, 2021.
    [29] V. H. Huxley, F. E. Curry, and R. H. Adamson, “Quantitative fluorescence microscopy on single capillaries: alpha-lactalbumin transport,” https://doi.org/10.1152/ajpheart.1987.252.1.H188, vol. 252, no. 1, 1987.
    [30] M. B. Chen et al., “Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation,” Proc. Natl. Acad. Sci., vol. 115, no. 27, pp. 7022–7027, 2018.
    [31] J. Song, A. Miermont, C. T. Lim, and R. D. Kamm, “A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines,” Sci. Reports 2018 81, vol. 8, no. 1, pp. 1–11, 2018.
    [32] K. T. Morin and R. T. Tranquillo, “In vitro models of angiogenesis and vasculogenesis in fibrin gel,” Exp. Cell Res., vol. 319, no. 16, pp. 2409–2417, 2013.
    [33] Y. Zheng et al., “In vitro microvessels for the study of angiogenesis and thrombosis,” Proc. Natl. Acad. Sci., vol. 109, no. 24, pp. 9342–9347, 2012.
    [34] O. Moreno-Arotzena, J. G. Meier, C. del Amo, and J. M. García-Aznar, “Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models,” Materials (Basel)., vol. 8, no. 4, p. 1636, 2015.
    [35] M. Mak, C. A. Reinhart-King, and D. Erickson, “Microfabricated Physical Spatial Gradients for Investigating Cell Migration and Invasion Dynamics,” PLoS One, vol. 6, no. 6, p. e20825, 2011.

    無法下載圖示 校內:2026-10-24公開
    校外:2026-10-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE