| 研究生: |
鄭景翔 Cheng, Ching-Hsuang |
|---|---|
| 論文名稱: |
GZO/Pt/GZO透明導電多層膜之性質研究及光學模擬 Characteristics and optical simulations of GZO/Pt/GZO transparent conductive multilayer thin film |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 多層膜 、氧化鋅 、鎵 、白金 、濺鍍 、透明導電膜 |
| 外文關鍵詞: | multilayer, Gallium, sputtering, transparent, conducting, ZnO |
| 相關次數: | 點閱:64 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用射頻磁控濺鍍系統來沉積鎵摻雜之氧化鋅薄膜(GZO)於玻璃基板上,藉由改變濺鍍條件中之射頻功率、鈀材與基板的距離、工作壓力及氧分壓等參數,探討製程參數對於沉積單層GZO薄膜之光學及導電性的影響,以橢圓儀的量測定義出薄膜之折射率(n)及消散係數(k),且利用UV-VIS可見光光譜儀量測薄膜之穿透率,將光學參數代入理論模擬的結果與實驗結果之光學特性比較分析,並探討薄膜晶粒大小、堆積密度、結晶性及粗糙度等結構特性對其光學常數的影響,藉由其分析結果定義出最佳製程條件之GZO透明導電膜。
在單層GZO薄膜的特性定出後,同樣以濺鍍的方式製備GZO/Pt/GZO三層結構之透明導電膜於玻璃基板上,首先將上下兩層之GZO薄膜厚度定為相同,以低功率成長奈米厚度之Pt膜,探討Pt厚度變化對於其光學及導電性的影響,並以TEM觀察層與層間介面的接合情形,同樣以理論模擬多層結構之光學性質,比較理論計算出之穿透率與實驗值並探討其間差異性,由於理論中之均勻性、等向性、表面平滑、完全接合等因素之假設,使得實驗值與理論模擬有些許落差,但藉由比較兩者之曲線趨勢可觀察到其表現是一致的,因此我們可利用理論模擬之方式設計出高穿透率之透明導電膜。
在理論中可觀察到穿透率會隨厚度而有震盪之表現,並計算出在厚度約為60nm下之GZO薄膜可使三層結構有最佳之穿透率,依此改變GZO薄膜之厚度可得實驗的結果與預期相符合,所以當材料的光學參數已知時,藉由理論模擬的結果可獲得最佳參數,且得以減少實驗中試誤的次數,依此可得到最佳光電性質之GZO/Pt/GZO三層結構的透明導電膜。
We report in this paper our study on gallium-doped ZnO (GZO) thin films and three-layered thin films, in which a Pt thin film is sandwiched in between two GZO thin films. First of all, GZO thin films were deposited on glass substrates using an RF magnetron sputter deposition method. The optical and electrical properties of GZO thin films with different deposition parameters, including sputtering power, T-S distance, working pressure and oxygen pressure, were investigated. The refractive index and extinction coefficient were obtained by ellipsometry spectrometry and the optical transmittance was determined by the UV-VIS spectrometry. Theoretical calculations were performed to model the optical properties of the GZO thin films. The relationships between optical constants and film structure were examined, including thickness, grain size, packing density, crystallinity and surface roughness.
According to the above analysis the best deposition parameters of GZO thin film can be determined. And then a three-layered thin film (GZO/Pt/GZO) was grown on the glass substrate to enhance the electrical conductivity. The Pt thin film was deposited between a fixed GZO thin film (22nm) using a dc magnetron sputter deposition method. The different thickness of Pt thin film were applied. All the films obtained were characterized for the electrical and optical properties. The variation of the properties with film thickness was investigated. Similarly, the theoretical simulations were also executed to model the optical properties of the three-layered thin films. The experimental data and the theoretical predictions were found to be in a good agreement.
However, the change of transmittance was also related to the GZO film thickness. A thickness about 60 nm GZO thin films were shown the best optical property in theoretical calculation. Therefore, a three-layered thin film with 60 nm GZO was accomplished and the result was consistent with the prediction. This allows the design of three-layered thin films for optimized electrical and optical transmittance.
[1] 曲喜新、楊邦朝、姜節儉、張懷武編著,”電子薄膜材料”,北京科學出版社出版,p93,1996
[2] 李玉華,”透明導電膜及其應用”,科儀新知,第十二卷第一期,p94-p102,1990
[3] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, 9, p1-64, 1977
[4] A. Suzuki, T. Matsushita, T. Aoki, A. Mori, M. Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin Solid Films, 411, p23-27, 2002
[5] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol., 20, S35, 2005
[6] Brian G. Lewis and David C. Paine, “Applications and Processing of Transparent Conducting Oxides”, MRS Bulletin, 22, Aug. 2000
[7] R. Wendt, K. Ellmer, K. Wiesemann, “Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system”, J. Appl. Phys., 82, p2115, 1997
[8] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, and T. Yao, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Appl. Phys. Lett., 77, p3761 -p3763, 2000
[9] V. Assuncão, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R. Martins, “New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering”, Thin Solid Films, 442, p102-p106, 2003
[10] V. Koss, A. Belkind, K. Memarzadeh, J. A. Woollam, “Determination of Optical Constants of Silver Layers in ZnO/Ag/ZnO Coatings Using Variable Angle Spectroscopic Ellipsometry”, Solar Energy Materials, Vol. 19, no. 1-2, p67-p78, Sept. 1989
[11] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk,“Dependence of film composition and thicknesses on optical and electrical properties of ITO-metal-ITO multilayers”, Thin Solid Films, 326, p67-p71, 1998
[12] G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis, “Development of multilayer transparent conductive coatings”, Solid State Ionics, 136–137, p655–p661, 2000
[13] Brian O'Regan, Michael Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, p737-p740, Oct. 1991
[14] S. E. Lindquist, A. Hagfeldt, H. Lindstrom, H. Rensmo, U. Bjorksten, S. Sodergren, “Colloidal films from TiO2, an electrode material for dye-sensitized solar cells”, SPIE -Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII, Vol. 2017, p240-p251, Oct. 1993
[15] T. Miyasaka, Y. Kijitori, T.N. Murakami, M. Kimura, S. Uegusa, “Efficient Nonsintering Type Dye-sensitized Photocells Based on Electrophoretically Deposited TiO2 Layers”, Chem. Lett., Vol. 31, No. 12, p1250, 2002
[16] J. G.. Doh, J. S. Hong, R. Vittal, M.G. Kang, N. G. Park, K. J. Kim, “Enhancement of Photocurrent and Photovoltage of Dye-Sensitized Solar Cells with TiO2 Film Deposited on Indium Zinc Oxide Substrate”, Chem. Mater., 16(3), p493-p497, 2004
[17] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells”, Chem. Lett.,Vol. 32, No. 1, p28, 2003
[18] D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L. Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin film”, Materials Science and Engineering: B, Vol. 52, No. 1, p59-p62, Mar. 1998
[19] P. Nunes, E. Fortunato, R. Martins, “Influence of the annealing conditions on the properties of ZnO thin films”, The International Journal of Inorganic Materials, Vol. 3, No. 8, p1125-p1128, Dec. 2001
[20] T. Minami, S. Suzuki, T. Miyata, “Electrical Conduction Mechanism of Highly Transparent and Conductive ZnO Thin Films”, MRS Symp. Proc., Vol. 666, 2001
[21] T. Minami, “New n-type transparent conducting oxides”, MRS Bulletin, Aug. 2000
[22] C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films”, J. Appl. Phys., Vol. 95, p1911-p1917, 2004
[23] Jianhua Hu and Roy G. Gordon, “Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium”, J. Appl. Phys., 72 (11), p5381-p5392, Dec. 1992
[24] A. R. Kaul, O. Yu. Gorbenko, A. N. Botev, L. I. Burova, “MOCVD of pure and Ga-doped epitaxial ZnO”, Superlattices and Microstructures, Vol. 38, Issue 4-6, p272-p282, 2005
[25] S. Zhu, J. Ye, S. Gu, S. Liu, Y. Zheng, R. Zhang, Y. Shi, “MOCVD growth and properties of Ga-doped ZnO films”, Chin. J. Semicond., Vol. 26, no. 8, p1567-p1571, Aug. 2005
[26] J.M. Torres-Rodrguez, N. Madrenys-Brunet, A. Sanchez-Juarez, A. Avila-Garcia, O. Lopez-Jodra, M. Siddat, T. Jimenez, A. Tiburcio-Silver, “Properties of gallium-doped ZnO deposited onto glass by spray pyrolysis”, Solar Energy Materials and Solar Cells, Vol. 55, No. 1, p3-p10, 1998
[27] N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan, and S. I. Petrosyan, “Absorption and reflection analysis of transparent conductive Ga-doped ZnO films”, Semicond. Sci. Technol., 20, p80, 2005
[28] Z.F. Liu, F.K. Shan, Y.X. Li, B.C. Shin, Y.S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition”, J. Cryst. Grow., Vol. 259, No. 1, p130-p136, Nov. 2003
[29] Tadatsugu Minami, Satoshi Ida, Toshihiro Miyata, “High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation”, Thin Solid Films, 416, p92–p96, 2002
[30] P.K. Songa, M. Watanabe, M. Kon, A. Mitsui, Y. Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering”, Thin Solid Films, 411, p82–p86, 2002
[31] X. Yu,, J. Ma, F. Ji, Y. Wang, X. Zhang, C Cheng, H. Ma, “Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature”, Applied Surface Science, 239, p222–p226, 2005
[32] T.H. Kim, S.H. Jeong, I.S. Kim, S.S. Kim, B.T. Lee, “Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films”, Semicond. Sci. Technol., 20, L43–L46, 2005
[33] 楊錦章,”基礎濺鍍電漿”,電子發展月刊,68期,p13-40,1983
[34] K.Wasa, “Handbook of sputter deposition technology”, p98, 1992
[35] B. Chapman, “Glow discharge processes”, John Wiley & Sons. Inc. N.Y., 1980
[36] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering”, J. Appl. Phys., 46(8), p3381-p3384, 1975
[37] B. Lewis and J. C. Anderson, “Nucleation and growth of thin films”, 1978
[38] M. Harsdorff, “Thin influence of charged point defects and contamination of substrate surface on nucleation”, Thin solid films, 116, p55-p74, 1984
[39] J. Venables, “Nucleation and growth of thin films”, Rep. Phys., 47, p399-p459, 1984
[40] J.A. Thornton, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coating”, J. Vac. Sci. Technol., 11(4), p666, 1974
[41] J.A. Thornton, “Influence of substrate temparature and deposition rate on tructure of thick sputtered Cu coatings”, J. Vac. Sci. Technol., 12(4), p830, 1975
[42] 李正中,”薄膜光學與鍍膜技術4th ed.”,2004
[43] L. Ward, “The optical constants of bulk materials and films,2nd”, 1994
[44] E. Fortunato, A. Goncalves, V. Assuncao, A. Marques, H. Aguas, L. Pereira, I. Ferreira, R. Martins, “Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence”, Thin Solid Films, 442, p121–p126, 2003
[45] B.D. Cullity, S.R. Stock, “Elements of X-ray diffraction 2rd”
[46] A. Sarker, “Studies on electron transport properties and Murstein -Moss shift in indium-doped ZnO films”, Thin solid films, 204, p255-p264, 1991
[47] D. Jiles, “Introduction to the electronic properties of materials”, Chapman and Hall, ch.9, p180, 1994
[48] V. Srikant and D.R. Clarke, “Optical absorption edge of ZnO thin film: The effect of substrate”, J. Appl. Phys., 81(9), p6357, May 1997
[49] H. K. Pulker, E. Jung, “Correlation between film structure and sorption behavior of vapor deposited ZnS, cryolite and MgF2 films”, Thin solid films, 9, p57-p66, 1971
[50] H. A. Macleod, “Structure-related optical properties of thin films,” J. Vac. Sci. Technol. A Vac. Surf. Films, Vol. 4, no. 3, p418–p422, May/June 1986
[51] W. D. Westwood, “Calculation of deposition rates in diode sputtering systems”, J.Vac. Sci. Technol., 15(1), p1-p9, 1978