簡易檢索 / 詳目顯示

研究生: 許正傑
Hsu, Cheng-chieh
論文名稱: 等壓雨屏牆風載之研究
Wind Loads on Pressure Equalized Rainscreen Walls
指導教授: 黃斌
Huang, Pin
陳太農
Chen, Tai-Nung
學位類別: 博士
Doctor
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 174
中文關鍵詞: 中空層等壓雨屏風向角透風孔
外文關鍵詞: Cavity, Pressure equalized rainscreen, Wind direction, Venting holes
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雨屏牆構法系統是由外部雨屏、內部氣屏與中空層所構成的外牆構造,藉外氣導入中空層來達成雨屏內外的等壓行為。等壓性能的優劣會影響中空層的排水性能與雨屏之風載。歐美國家對雨屏研究發展至今約有60年,初始乃由防水觀念而起,再衍變為以開放式接縫達成等壓來排水,提出利用等壓可減輕雨屏風載的相關研究,但各參數在減輕風載的標準尚未一致。相對地,與國外比較,台灣相關的應用研究不多,惟以台灣季風與多颱風的氣候環境下,外牆風載的設計是相當重要的一環;雨屏牆除了可以減輕雨屏風載外,其所節省之外牆結構與材料費用也相當可觀,乃一值得應用的外牆構造方法。

    本研究經由文獻,彙整影響等壓雨屏牆風載的因子,以點支撐雨屏牆構法為研究對象,透過風洞實驗、計算流體動力學的數值模擬測試以及水桌實驗的流場檢視,並與文獻比對;研究結果歸納如下三項,以供未來訂定雨屏牆風載設計之參考:
    1、以風洞實驗分析雨屏牆之風載
    以長寬高為1:1:1雨屏牆試體,正面迎風時,在0.6%的透風開孔率下,就開放式接縫、圓形透風孔及條狀透風孔三種透風形狀之雨屏而言,以條狀透風孔所受風載最小;在透風開孔率0.6%~3.3%的範圍,透風開孔率愈大,等壓性能愈好,故所受風載愈小。中空層容積在0.04 到0.16 m3的範圍,其對雨屏風壓差影響不明顯。非均勻流(α=0.15)與均勻流況之比較,雨屏等壓性能以均勻流優於非均勻流,均勻流況可達等壓性能80%,非均勻流況約達73%等壓性能。當面對不同風向時,風向角在60°~90°之間,等壓性能可能較差,因此雨屏所受風載有變大趨勢。
    2、數值模擬雨屏牆風載之適用性
    以CFD商用軟體Fluent標準k-ε紊流模式模擬,當正面迎風時,開放式接縫雨屏透風開孔率為0.6%~3.3%,等壓性能比風洞實驗值較高,建議減少約4%之修正值,可接近於風洞實驗結果。但風向角改變後,結果與風洞實驗有些微差異,對於由數值模擬雨屏牆風載之關係,在風向角45°~135°之間,待進一步檢討與模擬。
    3、水桌實驗檢視雨屏牆流場結構
    由水桌實驗可視化流場分析雨屏與氣屏正負壓的行為,與風洞實驗行為是相似的,在風向角60°~75°,雨屏出現正負壓的臨界角,同風洞實驗風向角75°時,雨屏內外可能出現較大的壓差,所以可由水桌實驗來輔助瞭解雨屏流場行為。

    Pressure equalized rainscreen (PER) wall is the combination of an external rain screen, an internal air barrier and an air cavity in between. The pressure equalization is achieved by introducing the outside air into the air cavity. The performance of pressure equalization rainscreen affects both the watertightness and the wind loading of the rain screen. Rain screen walls have been developing for the last 60 years in America and Europe, initiating from waterproof to recent wind load reduction. However, no standard or guideline is presented to describe how various parameters contributing to the wind load reduction on the rain screen. In contrast, there are relatively not many application studies in Taiwan. However, PER wall is very important in Taiwan, due to frequent reasons and many typhoons. Especially PER walls can increase safety of exterior walls by reducing wind loading through pressure equalization. Thus, this research aims to investigate how various parameters affect the wind loading on the PER walls by both experiments and CFD simulations, employing point support system. The key results are as follows:
    1. Wind loads on PER walls via wind tunnel test
    The results of wind tunnel test indicate that the pressure equalization performance on rain screen wall with strip is better than those with other geometries. As the vent hole area ratio increases for the range from 0.6% to 3.3%, the pressure equalization performance increases, an indication of a smaller pressure difference across the rain screen. For the range of cavity volumes from 0.04 to 0.16m3, the cavity volume has no significant effect on the pressure equalization performance. The percentage of pressure equalization can be obtained around 80% at least under uniform flow conditions and 73% at least under non-uniform flow conditions (profile exponent α=0.15). For the cubic model, the wind directions from 60° to 90° give a lower pressure equalization performance.
    2. The suitability of evaluating wind loads on PER walls by using numerical method
    At the wind direction of 0°, the percentage of pressure equalization by the numerical simulation is 4% higher than wind-tunnel, so using a numerical method to evaluate wind loads on PER walls is practicable. But as the wind direction changes, there are some differences between the results of CFD simulations and wind tunnel test for wind directions from 45° to 135°, so the method of numerical model should to be modified.
    3. The flow visualization of PER walls by water table
    The flow visualization of PER walls by water table is similar to the results of wind-tunnel. At about 75° of wind directions visualization shows a larger circulation, indicating a large pressure difference across the rain screen may exist. Therefore water table can be used to observe the flow phenomenon of PER walls efficiently.

    表目錄…………………………………………………………0III 圖目錄…………………………………………………………0IV 第一章 緒論…………………………………………………001 1-1 雨屏牆的源起與構成…………………………………001 1-2 雨屏牆的文獻回顧……………………………………003 1-3 研究動機與目的………………………………………010 1-4 研究方法與架構………………………………………012 1-5 研究對象範圍…………………………………………014 第二章 以風洞實驗探討雨屏牆風載 …………………019 2-1 風洞實驗計畫…………………………………………019 2-2 風洞實驗結果分析……………………………………026 2-3 雨屏牆風載資料建立…………………………………054 2-4 小結……………………………………………………057 第三章 以數值模擬分析雨屏牆風載 …………………059 3-1 數值模擬計劃…………………………………………060 3-2 數值模擬測試…………………………………………066 3-3 數值模擬結果分析……………………………………070 3-4 小結……………………………………………………079 第四章 以水桌實驗檢視雨屏牆流場 …………………081 4-1 水桌實驗計畫…………………………………………081 4-2 水桌實驗觀察分析……………………………………084 4-3 小結……………………………………………………100 第五章 綜合討論…………………………………………0103 5-1 構造參數與雨屏牆風載………………………………103 5-2 風向角與雨屏牆風載…………………………………109 5-3 小結……………………………………………………125 第六章 結論與建議………………………………………0129 6-1 結論……………………………………………………129 6-2 建議……………………………………………………133 參考文獻……………………………………………………134 附錄…………………………………………………… 附錄-01 一、雨屏牆案例………………………………………附錄-02 二、風洞實驗雨屏三個縱向分區∣△Cp∣最大值…附錄-14 三、數值模擬數據……………………………………附錄-19

    1. Anderson, J.M., Gill, J.R., “Rainscreen Cladding:a Guide to Design Principles and Practice,” Construction Industry Research and Information Association - Building and Structural Design Report, Butterworths, London, England, 1988.
    2. Architectural Aluminum Manufacturer's Association. , “The Rain Screen Principle and Pressure-Equalized Design,” American Architectural Manufacturer's Association (AAMA), 1971.
    3. Baskaran, A., “Review of Design Guidelines for Pressure Equalized Rainscreen Walls,” Internal Report No.629, Institute for Research in Construction (IRC), National Research Council of Canada (NRCC), Ottawa, Canada, 1992.
    4. Baskaran, A., “A Numerical Model to Evaluate the Performance of Pressure Equalized Rainscreen Walls,” Building and Environment, (29), pp.159-171, 1994.
    5. Birkeland, O., “Curtain Walls,” Handbook 11B, Norwegian Building Research Institute, Oslo, Norway, 1962.
    6. Brown, W.C., Rousseau, M.Z. and Dalgliesh, W.A., “Field testing of pressure equalized rainscreen walls,” ASTM STP 1034, Exterior wall symposium, Precast Concrete, Masonry and Stucco, Chicago, Illinois, 1991.
    7. Brown, W.C., Chown, G.A., Poirier, G.F. and Rousseau, M.Z., “Designing Exterior Walls According to the Rainscreen Principle,” Construction Technology Updates No.34, Institute for Research in Construction (IRC), National Research Council of Canada (NRCC), 1999.
    8. Building Research Station, “Light Cladding Part 1-General principles of design,” Building Digest 98 and 99,HMSO, Garston, Watford, UK, 1957.
    9. Burgess, J.C., “Air Pressure Equalization in Rainscreened Joints by Geometric Alteration,” Building and Environment, 30(1), pp.13-18, 1995.
    10. Burgess J.C., “Pressure Equalized Rainscreen Joint Modelling with Numerical Model PERAM,” Building and Environment, 30(3), pp.385-389, 1995.
    11. Burgess, J.C., McCardle, G., “Building Cladding Air Pressure Equalization Investigations-Comparison between Field Results and a Numerical Model,” Building and Environment, (35), pp.251-256, 2000.
    12. Choi, E.C.C, Wang, Z., “Study on Pressure-equalization of Curtain Wall Systems,” Journal of Wind Engineering and Industrial Aerodynamics, (73), pp.251-266, 1998.
    13. Chown, G.A., Poirier, G.F. and Brown, W.C., “Evolution of Wall Design for Controlling Rain Penetration,” Construction Technology Update No. 9, Institute for Research in Construction (IRC), National Research Council of Canada (NRCC), 1997.
    14. Fazio, P., Kontopidis, T., “Cavity pressure in rainscreen walls,” Building and Environment, 23(2), pp.137-43, 1988.
    15. Ganguli, U., “Wind and Air Pressures on the Building Envelope,” Building Science Insight, National Research Council of Canada (NRCC), 1986.
    16. Ganguli, U., Quirouette, R.L., “Pressure Equalization Performance of A Metal and Glass Curtain Wall,” CSCE Centennial Conference, IRC1542 (1988), NRCC, Montreal, Quebec, Canada, 1987.
    17. Garden, G.K., “Rain Penetration and its Control,” Canadian Building Digest 40, National Research Council of Canada (NRCC), 1963.
    18. Gerhardt, H.J., Janser, F., “Wind Loads on Wind Permeable Facades,” Journal of Wind Engineering and Industrial Aerodynamics, (53), pp.37 -48, 1994.
    19. Inculet, D.R., Davenport, A.G., “Pressure-equalized rainscreens: A study in the frequency domain,” Journal of Wind Engineering and Industrial Aerodynamics, (53), pp.63-87, 1994.
    20. Inculet, D.R., Surry, D., “The Influence of Unsteady Pressure Gradients on Compartmentalization Requirements for Pressure-Equalized Rainscreens,” Canadian Housing Information Center (CHIC), 1996.
    21. Inculet, D.R., Surry, D., “Optimum Vent Location for Partially-Pressure Rainscreen,” Canadian Housing Information Center (CHIC), 1997.
    22. Johansson, C.H., “The Influence of Moisture on the Heat Conductance for Brick,” Byggmastaren, Nr., 1946.
    23. Killip, I.R., Cheetham, D.W., “The prevention of rain penetration through external walls and joints by means of pressure equalization,” Building and Environment, 19(2), pp.81-91, 1984.
    24. Ritchie, T., “Cavity walls,” Canadian Building Digest 21, National Research Council of Canada (NRCC), 1961.
    25. Rousseau, M.Z., “Facts and Fictions of Rain-Screen Walls,” Construction Canada, 32(2), National Research Council of Canada (NRCC), 1990.
    26. Rousseau, M.Z., Poirier, G.F. and Brown, W.C., “Pressure Equalization in Rainscreen Wall Systems,” Construction Technology Update No. 17, Institute for Research in Construction (IRC), National Research Council of Canada (NRCC), 1998.
    27. Skerlj, P.F, Surry, D., “A study of mean pressure gradients, mean cavity pressures and resulting residual mean pressures across a rainscreen for a representative building,” Interim Progress Report to CMHC, Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, 1994.
    28. Suresh Kumar, K., Van Schijndel, A.W.M., “Prediction of Pressure Equalization Performance of Rainscreen Walls,” Wind and Structures,(2)4, pp.325-45, 1999.
    29. Suresh Kumar, K., “Pressure Equalization of Rainscreen walls: a Critical Review,” Building and Environment, (35), pp.161-79, 2000.
    30. Suresh Kumar, K., Stathopoulos, T. and Wisse, J.A., “Field Measurement Data of Wind Loads on Rrainscreen Walls,” Journal of Wind Engineering and Industrial Aerodynamics, (91), pp.1401-17, 2003.
    31. Van Schijndel, A.W.M., Schols, S.F.C., “Modeling pressure equalization in cavities,” Journal of Wind Engineering and Industrial Aerodynamics, (74-76), pp.641-9, 1998.
    32. Wilson, A.G., “Air Leakage in Building,” Canadian Building Digest 23, National Research Council of Canada (NRCC), 1961.
    33. Xie, J., Schuyler G.D., Resar, H.R., “Prediction of net pressure on pressure equalized cavities,” Journal of Wind Engineering and Industrial Aerodynamics, (41-44), pp.2449-60, 1992.
    34. 大野隆司, “乾式外壁構法の現況”,〈新‧ファサードシステム-中高層ビルのファサード〉,ファサードシステム開發研究委員會,日本,1990.
    35. 川端三朗, “風と外裝材”,〈建築技術〉,日本,pp.138-40,1994.
    36. 內藤龍夫,〈カーテンウォールのオープンジョイント〉,鹿島出版社,日本,1987.
    37. 茅野紀子, “風と空氣層”,〈建築技術〉,日本,pp.141-5,1994.
    38. 野城智也, “二重壁構法”,〈現代建築技術のディテール〉,日本,1992.
    39. 野城智也, “オープンジョイント構法”,〈現代建築技術のディテール〉,日本,1992.
    40. 橫田暉生, “建築外裝メカ二ズム読本”,〈建築技術〉,日本, 1995.
    41. 朱佳仁,〈工程流體力學〉,科技圖書,2005
    42. 宋大宇, “非均勻紊流下雨屏牆等壓性能之研究”,〈國立成功大學建築研究所碩士論文〉,2006.
    43. 李昆祐, “計算流體力學對雨屏牆等壓性能之初探”,〈國立成功大學建築研究所碩士論文〉,2006.
    44. 周榮華、朱佳仁、任森柯, “風洞實驗館風洞性能驗證研究(2)”,內政部建築研究所,2004.
    45. 許正傑, “開放式接縫對雙重牆空氣層風壓之探討”,〈國立成功大學建築研究所碩士論文〉,1996.
    46. 陳兆華, “風攻角對雨屏牆等壓性能之研究”,〈國立成功大學建築研究所碩士論文〉,2005.
    47. 鄭佳欣, “雨屏透風孔幾何形狀對雨屏牆等壓性能之研究”,〈國立成功大學建築研究所碩士論文〉,2005.
    48. 顧宗沛, “以雙重牆原理探討外牆改修構法”,〈國立成功大學建築研究所碩士論文〉,2004.

    下載圖示 校內:立即公開
    校外:2007-07-25公開
    QR CODE