簡易檢索 / 詳目顯示

研究生: 郭意均
Kuo, Yi-chun
論文名稱: 不同環境因子及營養鹽成分對河道中水綿藻屬氮磷攝取效率影響之研究
The effects of assimilating efficiency of nitrogen and phosphorous with different environmental factors and nutrient components by Spirogyra in the river
指導教授: 高銘木
Kao, Ming-muh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 水綿藻優養化分子生物技術
外文關鍵詞: Spirogyra, nitrogen, molecular biology technique, eutrophication, phosphorous
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究配合野外相關調查,評估水綿藻屬對營養鹽之攝取效果,進ㄧ步探討其應用於降低水庫或集水區氮磷濃度及改
    善優養化現象之可行性。
    前置實驗結果顯示,在培養基pH為9及不攪拌的情況下,水綿對營養鹽攝取效果較佳,應與其絮聚特性有關,培養週期
    為4天,而在營養鹽攝取方面,其對碳酸鹽、硝酸鹽及磷酸鹽之最高攝取量,則分別可達12%、70%及25%。
    批次實驗結果顯示,比較環境因子對單位藻體之總氮及正磷酸鹽攝取量的影響發現,在溫度、pH及營養鹽濃度皆為
    high level的情況下水綿藻攝取效果較佳,其單位藻體對總氮與正磷酸鹽之攝取量最高分別可達36.89 mg/g.L與6.99
    mg/g.L。經ANOVA轉換分析後,發現在總氮的部分並無顯著影響的單一或複合因子存在,而影響正磷酸鹽攝取之重要
    影響因子主要是溫度及磷酸鹽添加濃度。
    比較其對總氮之攝取實驗結果後發現,部分組別總氮量於實驗結果後卻有增加的情形,經增測TKN後發現,有機氮可能
    藉由代謝作用而自藻體釋放至水樣中,其濃度為0-1.36 mg/g.L,故導致最終總氮變化量為負值。總脂質增加量最高
    可達77.35%,且與水綿藻對氮磷攝取效果間具正相關性,意即此藻種不僅可降低水庫或集水區內氮磷含量,亦具有發
    展生質能源之潛勢。
    在藻種鑑定的部分發現,不同採樣地點之藻種S1、S2與S3,經16S rDNA鑑定後,皆屬於Zygnemataceae科中Spirogyra
    屬,同集水區不同河道所存在之附著性藻類鑑定後並無明顯差異。

    This research mainly combined with the field investigation to estimate the availability of assimilation
    of nutrients by Spirogyra. The results could further apply to decrease the concentrations of nitrogen
    and phosphorous and improve the eutrophication in the reservoir or watershed.
    The results of primary experiments indicated the assimilated amounts of nutrients increased when the pH
    of medium was 9 without stirring. It was probably attributed to the flocculated effects of Spirogyra.
    The period of culture was 4 days and the highest assimilated amounts of carbonate, nitrate and
    phosphorous were 12%, 70% and 25%, respectively.
    The results of batch experiments showed the effects of total nitrogen and ortho-phosphate per dry
    weight of Spirogyra with various environmental factors. The assimilated amounts by Spirogyra would
    better when the pH, temperature and concentration of nutrients were classified to high levels. The
    highest assimilated amounts of nitrogen and ortho-phosphate per dry weight of Spirogyra were 36.89 mg/g
    .L and 6.99 mg/g.L. After transferring and analyzing with ANOVA software, we could find there was no
    significant effect existed on the assimilation of total nitrogen. But the temperature and
    concentrations of phosphate-adding were the major factors and had the apparent effects for assimilating
    by Spirogyra.
    To compare the results of assimilating amounts of total nitrogen we found that the values increased in
    some experiments after cultivating. It was referred to the organic nitrogen released from algae via
    metabolism function to induce the variations of total nitrogen to become negative and the
    concentrations per dry weight of Spirogyra were about 0-1.36 mg/g.L. The total lipid contents
    increased with increasing the assimilated amounts of nutrients and the highest value of raising was
    77.35%. It was implied the Spirogyra could apply to decrease the concentrations of nitrogen and
    phosphorous in the reservoir and watershed and also had the potential for developing bioresource.
    We also used the molecular biology technique to identify the test algae and the results indicated the
    S1, S2 and S3 could categorized as Spirogyra geuns and Zygnemataceae family. The different sampling
    zones of watershed didn’t discover the variations in the types of attached algaes.

    目錄 摘要………………………………………………………………Ⅰ Abstract…………………………………………………………Ⅲ 致謝………………………………………………………………Ⅴ 目錄………………………………………………………………Ⅳ 表目錄……………………………………………………………Ⅷ 圖目錄……………………………………………………………Ⅹ 第一章 前言……………………………………………………1 1-1 研究緣起……………………………………………1 1-2 研究目的與內容……………………………………3 第二章 文獻回顧………………………………………………4 2-1 優養化現象之成因與分類…………………………4 2-2 營養鹽去除方法概述………………………………6 2-3 河道附著性藻類之簡介……………………………13 2-4 影響附著性藻類生長之因子………………………18 2-5 實驗設計概論………………………………………22 2-6 分子生物技術應用於藻種鑑定之研究……………24 2-6-1 DNA萃取……………………………………………27 2-6-2 聚合酶鏈鎖反應……………………………………28 2-6-3 瓊脂膠體電泳………………………………………31 2-6-4 定序…………………………………………………31 第三章 實驗方法與材料………………………………………32 3-1 實驗器材與藥品……………………………………33 3-1-1 培養基成分…………………………………………33 3-1-2 藥品…………………………………………………34 3-1-3 儀器…………………………………………………36 3-2 實驗藻種來源及培養………………………………37 3-3 藻類基本組成成分分析……………………………38 3-3-1 藻類金屬含量分析…………………………………38 3-3-2 藻體元素成分及含量分析…………………………39 3-3-3 總脂質分析…………………………………………39 3-4 前置試驗……………………………………………40 3-5 批次試驗……………………………………………42 3-5-1 批次試驗營養鹽攝取量分析………………………44 3-5-1-1 水中硝酸鹽氮檢測方法-分光光度計………………44 3-5-1-2 水中亞硝酸鹽氮檢測方法-分光光度計……………44 3-5-1-3 水中凱氏氮檢測方法………………………………45 3-5-1-4 氨氮檢測方法………………………………………45 3-5-1-5 水中正磷酸鹽檢測方法-分光光度計………………46 3-5-1-6 藻體乾重分析………………………………………46 3-6 藻種鑑定……………………………………………47 3-6-1 藻體之DNA萃取………………………………………47 3-6-2 藻體DNA之聚合酶鏈鎖反應…………………………50 3-7 定序…………………………………………………52 第四章 結果與討論……………………………………………53 4-1 水綿藻藻體基本成分分析…………………………53 4-2 前置試驗……………………………………………55 4-3 氮磷攝取批次試驗…………………………………62 4-3-1 環境因子對水綿攝取氮效果之影響………………62 4-3-2 環境因子對水綿攝取磷效果之影響………………65 4-3-3 單位藻體對氮攝取效果利用ANOVA軟體轉換分析…69 4-3-4 單位藻體對磷攝取效果利用ANOVA軟體轉換分析…71 4-4 攝取試驗前後藻體成分變化分析…………………74 4-4-1 總脂質含量變化分析…………………………………74 4-5 藻種鑑定……………………………………………77 4-5-1 不同前處理方式對DNA萃取效果之影響……………77 4-5-2 聚合酶鏈鎖反應最適煉合溫度之決定……………80 4-5-3 實驗藻種之定序……………………………………82 第五章 結論與建議……………………………………………90 5-1 結論……………………………………………………90 5-2 建議……………………………………………………91 參考文獻…………………………………………………………92 自述………………………………………………………………98

    行政院環境保護署環境檢驗所,水質檢測方法,http://www.niea.gov.tw/analysis/method/ListMethod.asp?

    methodtype=WATER。
    行政院環境保護署,「以藻類去除水體氮磷技術評估及調查」,民國九十五年。
    吳人堅等編,「植物學實驗方法」,上海科學技術出版社,民國七十六年。
    汪靜明、謝季吟、王一匡,「大甲溪中游剛毛藻與水綿之生態環境特性」,國立師範大學生物科學研究所碩士論文,

    民國八十年。
    李志源等,「布袋蓮人工濕地之功能評估」,第二十二屆廢水處理技術研討會論文集,第732~736頁,臺北,民國八

    十六年。
    吳朱華、張益三,「水庫水質優養化模式適用性探討」,國立成功大學工程院工程管理在職專班碩士論文,民國九十

    五年十一月。
    林瑩峰、荊樹人,「人工濕地生態工法在水污染防治上的應用及案例」,生態工法案例編選集,民國九十三年。
    徐尉晏,「應用分生技術鑑定澄清湖水庫之放線菌及探討營養源氮磷之影響」,國立成功大學環境工程研究所碩士論

    文,民國九十四年六月。
    黃勝忠、蔡奇助、易美秀,「利用分子標誌分析rDNA之ITS區域鑑定文心蘭亞族品種」,臺中區農業改良場研究彙報74

    ,第1-15 頁,民國九十一年。
    經濟部工業污染防治技術服務團;財團法人中國技術服務社編;曾迪華著,「廢水處理常用化學藥劑」,財團法人中

    國技術服務社,第27-40頁,臺北巿,民國七十七年。
    蔡凱元、楊磊,「以人工濕地處理垃圾滲出水可行性之研究」,國立中山大學海洋環境及工程學系研究所碩士論文,

    民國九十二年六月。
    歐陽嶠暉,「下水道工程學」,長松文化興業股份有限公司,臺北巿,第536-547頁,民國七十二年。
    賴雪端,「台灣本土性底棲藻類做為河川水質指標之研究」,國立中興大學植物研究所博士論文,民國八十六年。

    Appels R., W. L. Gerlach, E. S. Dennis, H. Swift and W. J. Peacock. Molecular and chromosomal

    organization of DNA sequence coding for the ribosomal RNAs in cereals.Chromosoma, 78, 293-311, 1980.
    Barker R. F., N. P. Harberd, M. G. Jarvis and R. B. Flavell. Structure and evolution of theintergenic

    region in a ribosomal DNA repeat unit of wheat. J. Mol. Biol., 201, 1-17, 1988.
    Beech R. N. and C. Strobeck. Structure of the intergenic spacer region from the ribosomal RNA gene

    family of white spruce (Picea glauca). Plant Mol. Biol., 22, 887-892, 1993.
    Berrry, H. A. and C. A. Lembi. Effects of temperature and irradlance on the seasonal variation of a

    Spirogyra (Chlorophyta) population in Midwestern lake (U. S. A.). J. Phycology, 36, 841-851, 2000.
    Clifford S. D., B.E. Lapointe and J. Ramus. Effects of light on growth, RuBPCase Activity and chemical

    composition of ULVA speices(chlorophyta). Journal of phycology, 22, 3, 362-370, 1986.
    Charles F. D., K. G. Karol and M. T. Cimino. Phylogeny of the genus coleochaete (coleochaetales,

    charophyta) and related taxa inferred by analysis of the chloroplast gene rbcL. J. Phycology, 38, 394-

    403, 2002.
    Christopher S. D., J. H., K. G. Karol and C. F. Delwiche. Phylogeny of Spirogyra and Sirogonium

    (Zygnematophyceae) based on rbcL sequence data. J. Phycology, 41, 1055-1064, 2005.
    D’ Ovidio R. Nucleotide sequence of a 5.8S rDNA gene and of the internal transcribed spacers from

    Populus deltoides. Plant Mol. Biol., 19, 1069-1072, 1992.
    Gordon M. S., D. J. Capman, L. Y. Kawasaki, E. Tarifino-Silva and D. P. Yu. Aquacultural approaches to

    recycling of dissolved nutrients in secondarily treated domestic wastewater. IV: Conclusions, design

    and operational considerations for artificial food chains. Water Res., 16, 67-71, 1982.
    Hofstra D. E., C.E.C. Gemmill and M.D. de Winton. Preliminary genetic assessment of New Zealand

    isolates and nitella, using DNA sequencing and RAPDs. Science for conservation 266, 10-15, 2006.
    International Water Association. Constructed Wetlands for pollution Control, Process, Performance,

    Design and Operation. IWA Publishing, London, 2000.
    Kato A., T. Nakajima, J. Yamashita, K. Yakura and S. Tanifuji. The structure of the large spacer region

    of the rDNA in Vicia faba and Pisum sativum. Plant Mol. Biol., 14, 983-993, 1990.
    Lee, R. E. 3rd ed Phycology. Cambridge University Press. UK., 1999.
    Manhart J. R., Phylogenetic analysis of green plant rbcL sequence. Molecular phylogenetics and

    evolution, 3, 2, 114-127, 1994.
    Richards E., M. Reichardt and S. Rogers. Preparation of genomic DNA from plant tissue. Current

    Protocals in Molecular Biology, (Ausubel F.M. et al., Eds)John Wiley &Sons,Inc, 2.3.1-2.3.7, 1988.
    Ryding S.O. and W. Rast. The control of Eutrophication of lakes and reservoirs published by UNESCO.

    Paris,France, 314, 1989.
    Richard M. M., K. G. Kard, J. Bell, K. M. Helm-Bychowski, A. Grajewska, M. F. Wojciechowski and R. W.

    Hoshaw. Phylogeny of the conjugating green algae (zygnemophyceae) based on rbcL sequence. J. Phycology,

    31, 747-758, 2000.
    Shelef G. and C. J. Soeder. Algae Biomass: Production and Use. Elsevier Press, Amsterdam, The

    Netherlands, 852, 1980
    Starr R.C. and J. A. Zeikus. Utex-the culture collection of algae at the university of Texas at Austin.

    J. Phycology, 29, 1-106, 1993.
    Stewart C. N., Jr. and E. V. Laura. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting

    and other PCR applications. Biotechniques., 14, 5, 748-50, 1993.
    Takaiwa F., K. Oono and M. Sugiura. The complete nucleotide sequence of a rice 25S rRNA gene. Gene, 37,

    255-289, 1985.
    Taira, T., A. Kato and S. Tanifuji. Difference between two major size classes of carrot rDNA repeating

    units is due to reiteration of sequences of about 460 bp in the large spacer. Mol. Gen. Genet., 213,

    170-174, 1988.
    Thomas D., G. Kevin, F. E Dierberg, S. D. Jackson and M. J. Chimney. An investigation of the limits of

    phosphorus removal in wetlands: a mesocosm study of a shallow periphyton-dominated treatment system.

    Ecological Engineering, 23, 1, 1–14, 2004.
    U.S. EPA. A Handbook of Constructed Wetlands. 5, 1995. (Region III with USDA, NRCS, ISBN 0-16-052999-9)
    Venkateswarlu, K. and R. Nazar. A conserved core structure in the 18-25S rRNA intergenic region from

    tobacco, Nicotiana rustica. Plant Mol. Biol., 17, 189-194, 1991.
    Waldron J., P. Dunsmuir and J. Bedbrook. Characterization of the rDNA repeat units in the Mitchell

    Petunia genome. Plant Mol. Biol., 2, 57-65, 1983.
    Woese C. R. Bacterial Evolution. Microbiol. Rev., 51, 221-271, 1987.

    下載圖示 校內:2008-08-08公開
    校外:2008-08-08公開
    QR CODE