簡易檢索 / 詳目顯示

研究生: 吳靜玫
Wu, Ching-Mei
論文名稱: 含氮高熵合金鍍層之機械、磨潤及抗腐蝕性質及應用於模造玻璃模具抗沾黏性與高速微鑽針之研究
Mechanical, tribological and anti-corrosion properties of nitrided high entropy coatings applied to glass anti-sticking mold and high speed drill
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 高熵合金鍍層玻璃沾黏高速鑽針機械性質抗腐蝕性質
外文關鍵詞: high entropy alloy coating, glass-sticking, high speed drill, mechanical property, corrosion resistance
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用RF射頻磁控濺鍍系統在不同氮氣通量下製備TaNbSiZrCr高熵合金鍍層於碳化鎢及矽晶片底材上,研究其結構、機械性質、磨耗性質、耐腐蝕性質及抗玻璃沾黏性質並將具有最佳性質之鍍層濺鍍於微鑽針上進行鑽削實驗,評估高熵合金鍍層用於鑽削工業的可行性。試片命名為RNx,其中x為氮氣通量除氬氣通量,熱處理過後的試片命名為HRNx。
    高熵合金鍍層RN0非晶相,並隨著氮氣增加轉變為非晶相與奈米晶粒結合的複合相,結構經真空熱處理後有較明顯的BCC及FCC衍射峰出現。RN0至RN0.4的鍍層顯示無特色且緻密的斷面結構,RN0.5則顯示有些為柱狀晶的結構,但仍呈現緻密的斷面,熱處理過後的鍍層結構無明顯變化。隨著氮氣通量的上升,鍍層內金屬與氮鍵結也隨之升高,故硬度隨著氮氣通量上升而上升,並在RN0.5時有最高的硬度,熱處理過後硬度並沒有明顯的改變,說明鍍層熱穩定性高。
    高熵合金鍍層經9000圈磨耗測試後,不論使用氮化矽球或鉻鋼球作為對磨材,鍍層皆破裂並露出底材,說明鍍層無法有效保護底材,但可觀察到隨著添加但的高熵合金鍍層磨耗率有下降的趨勢,說明通入氮氣可提升鍍層抗磨耗性質。RN0.5因其為柱狀結構較其餘鍍層鬆散,故磨耗率上升。熱處理組別亦顯示相同的趨勢。
    根據不同的結構與金屬-氮鍵結含量,高熵合金鍍層在RN0.5有最低的腐蝕電流2.85×10-6 Amps/cm2,表示其具有最優異的耐腐蝕性,但未熱處理的高熵合金腐蝕電流均比碳化鎢底材高,說明高熵合金鍍層無法有效保護底材。熱處理的後的底材抗腐蝕性大幅的下降,而高熵合金鍍層則因表面形成較薄的氧化層,故有較優異的抗腐蝕性質。
    抗玻璃沾黏試驗中,碳化鎢與RN0.5鍍層表面有嚴重的玻璃沾黏,產生沾黏原因分別為結合劑鈷及柱狀結構的關係,前者因鈷作為碳化鎢結合劑在高溫下易與玻璃產生介面反應,後者因柱狀結構提供易擴散元素擴散路徑,在沾黏實驗中,擴散至表面與玻璃產生嚴重的介面反應。RN0至RN0.4表現出良好的抗沾黏性。比較熱處理前後的試片接觸角變化可說明試片是否具有良好的熱穩定性,原材碳化鎢的變化最為劇烈,其餘高熵合金鍍層並沒有明顯的變化,說明高熵合金具有良好的熱穩定性。
    以RN0.5作為保護鍍層披覆於微鑽針上進行鑽削實驗並與裸刀進行比較,鑽削約4000孔時,孔壁粗糙度與釘頭比已超過工業標準規範,說明以裸刀進行鑽削其壽命僅能達到2000孔,而披覆RN0.5鍍層的微鑽針鑽削6000孔後,其孔壁粗糙度與釘頭比已低於工業標準,說明披覆RN0.5可有效提升產品品質及刀具壽命。

    In this study, the TaNbSiZrCr high entropy alloy nitrided coatings were deposited on tungsten carbide and silicon wafer by RF unbalanced magnetron sputtering system under various N2 flow. The coatings were named as RNx, where x =N2/Ar ratio. To simulate the glass molding process and investigate the property of annealed coatings, the coated sample were annealed at 750℃ for an hour named HRNx. The as-deposited coatings exhibit a nanocrystalline mixed amorphous structure and the cross-section images of shows the coating exhibited a dense and featureless structure except RN0.5 show a slight column structure. After annealing, the coatings structure change from BCC to FCC, and the cross section image show the same result as unannealed ones. The coating hardness increased as the nitrogen flow increased and the hardness has no obviously changed after annealing indicated the coatings exhibited excellent thermal stability. The result of tribological properties demonstrate that the nitrogen content in the HEA coatings can improve the wear rate except RN0.5 due to its column structure. The HEA coating can avoid glass sticking on the coating effectively besides RN0.5. For drilling performance on micro-drill, the RN0.5 coating can improve product quality and prolong the lifetime three times than uncoated micro-drill.

    考試及格證明 I 中文摘要 II Extended Abstract IV 誌謝 IX 總目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 第二章 理論探討與文獻回顧 2 2-1 濺鍍原理 2 2-2 高熵合金介紹 2 2-2-1 高熵合金四大效應 2 2-2-2 高熵合金特性研究 3 2-3 模造玻璃製程與鍍層 5 2-4 本研究使用元素 7 第三章 實驗方法與步驟 9 3-1 實驗目的 9 3-2 濺鍍製程 9 3-2-1 底材準備與靶材配製 9 3-2-2 濺鍍參數 10 3-3 實驗方法 10 3-3-1 鍍層結構與成分分析 10 3-3-2 附著性試驗 11 3-3-3 抗沾黏試驗 12 3-3-4 接觸角試驗 13 3-3-5 硬度試驗 13 3-3-6 磨耗試驗 13 3-3-7 電化學腐蝕試驗 14 3-3-8 PCB高速微鑽針鑽削試驗 14 3-4 實驗設備與廠商資訊 16 第四章 實驗結果與討論 18 4-1 鍍層結構與成分分析 18 4-1-1 成分分析 18 4-1-2 結構分析 19 4-2 鍍層厚度、機械性質及附著性分析 23 4-3 磨耗試驗 27 4-3-1 摩擦係數-鉻鋼球 27 4-3-2 磨耗機制-鉻鋼球 30 4-4 氮化矽球磨耗試驗 33 4-4-1 摩擦係數-氮化矽球 33 4-4-2 磨耗機制-氮化矽球 35 4-5 電化學腐蝕分析 38 4-6 抗沾黏分析 42 4-7 接觸角分析 47 4-8 PCB高速鑽針鑽削試驗 49 第五章 結論 56 第六章 未來展望與發展 58 參考文獻 59

    [1] 楊雲凱,物理氣相沉積(PVD)沉積介紹,Nano communication, 22 (2015) 33-35
    [2] B. Window, Issues in magnetron sputtering of hard coatings, Surface and coatings Technology, 81 (1996) 92-98
    [3] Matt Hughes, What is RF Sputtering? Semicore Equipment, Inc (2016), http://www.semicore.com/news/92-what-is-rf-sputtering
    [4] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6 (2004) 299-303
    [5] S. Wang, Z. Chen, P. Zhang, K. Zhang, C. L. Chen, B. L. Shen, Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys, Vacuum, 163 (2019) 263-268
    [6] Y.F. Kao, T.J. Chen, S.K Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and-deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys, Journal of Alloys and Compounds, 488 (2009) 57-64
    [7] H. Cheng, W. Chen, Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy, Material Science and Engineering A 719 (2018) 192-198.
    [8] X. Xian, L. Lin, Z. Zhong, C. Zhang, C. Chen, K. Song, J. Cheng, Y. Wu, Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys, Material Science and Engineering A 714 (2018) 134-140
    [9] S. K. Wong, T. T. Shun, C. H. Chang, C. F. Lee, Microstructures and properties of Al0.3CoCrFeNiMnx high-entropy alloys, Mater. Chem. Phys. 210 (2010) 146-151
    [10] H. Jiang, K. Han, D. Qiao, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy, Material Chemistry and PhysicsVol 210 (2018) 43-48
    [11] C. Mathiou, A. Poulia, E. Georgatis, A.E. Karantzalis, Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy, aterial Chemistry and Physics 210 (2018) 126-135
    [12] J.M. Wu, S.J. Lin, J. W. Yeh, S.K. Chen, Y.S. Huang, H. C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear 261 (2006) 513-519
    [13] A. Ayyagari, C. Barthelemy, B. Gwalani, Reciprocating sliding wear behavior of high entropy alloys in dry and marine environments, Material Chemistry and Physics 210 (2018) 162-169
    [14] S. Zhao, L.-X. He, X.-X. Fan, C.-H. Liu, J. P. Long, L. Wang, H. Chang, J. Wang, W. Zhang, Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel, Surface and Coating Technology 375 (2019) 215-220
    [15] S. Chen, Z. Cai, Z. Lu, J. Pu, R. Chen, S. Zheng, C. Mao, S. Chen, Tribo-corrosion behavior of VAlTiCrCu high-entropy alloy film, Materials Characterization 157 (2019) 109887
    [16] Y.Y. Liu, Z. Chen, Y. Z. Chen, J. C. Shi, Z. Y. Wang, S. Wang, F. Liu, Effect of Al content on high temperature oxidation resistance of AlxCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2), Vacuum 169 (2019) 108837
    [17] W. J. Shen, M. H. Tsai, K. Y. Tsai, C. C. Juan, C. W. Tsai, J. W. Yeh, Y. S. Chang, Superior Oxidation Resistance of (Al0.34Cr0.22Nb0.11Si0.11Ti0.22)50N50 High-Entropy Nitride, Journal of the Electrochemical Society 160 (2013) 531-535
    [18] Cong Liu, Wenyi Peng, C.S. Jiang, Hongmin Guo, Jun Tao, Xiaohua Deng, Zhaoxia Chen, Composition and phase structure dependence of mechanical and magnetic properties for AlCoCuFeNix high entropy alloys, Journal of Materials Science and Technology 35, Issue 6, (2019) p.1175-1183
    [19] Panpan Li, Anding Wang, C.T. Liu, A ductile high entropy alloy with attractive magnetic properties, Journal of Alloys and Compounds 694, (2017) p.55-60
    [20] T. T. Zuo, R. B. Li, X. J. Ren, Y. Zhang, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy, Journal of Magnetism and Magnetic Materials 371, (2014) p.60-68
    [21] Y.I. Chen, B.L. Lin, Y.C. Kuo, J.C. Huang, L.C. Chang, Y.T. Lin, Preparation and annealing study of TaNx coating on WC-Co substrate, Applied Surface Science 257 (2011) 6741-6749
    [22] C.L. Chao, C.B. Huo, W.C. Chou, Y.R. Lin, K.J. Ma, H.H. Chien, Study on the design of precious metal based protective films for glass moulding process, Surface and Coatings Technology 231 (2013) 567-572
    [23] S.C. Liu, Y.I Chen, J.J. Shyu, H.Y. Tsai, K.Y. Lin, Y.H Chen, K.C. Lin, The chemical inertness of Ir-Re and Ta-Ru coatings in moulding B2O3-ZnO-La2O3-based glass, Surface and Coatings Technology 259 (2014) 352-357
    [24] H.H. Chien, K.J. Ma, C.H. Kuo, C.B. Huo, C.L. Chao, Y.T. Chen, The Effect of TaN Interlayer on the Performance of Pt-Ir Protective Coatings in Glass Molding Process, Defect and Diffusion Forum 297-301 (2010) 869-874.
    [25] F. Klocke, K.D. Bouzakis, K. Georgiadis, S. Gerardis, G. Skordaris, M. Pappa, Adhesive interlayers' effect on the entire structure strength of glass molding tools' Pt–Ir coatings by nano-tests determined, Surface and Coatings Technology 206 (2011) 1867-1872
    [26] W.H. Kao, Y.L. Su, J.H. Horng C.C. Yu, Effects of pulse power and argon flux flow rate on mechanical and tribological properties of diamond-like carbon coatings prepared using high power impulse magnetron sputtering technology, Thin Solid Films 693 (2020) 137712
    [27] D.R. Tallant, J.E. Parmeter, M.P. Siegal, R.L. Simpson, The thermal stability of diamond-like carbon, Diamond and Related Materials 4 (1995) 191-199
    [28] Yung I Chen, Yu Ru Cheng, Li Chun Chang, Tso Shen Lu, Chemical inertness of Ta-Si-N coatings in glass molding, Thin Solid Film. 584 (2015) 66-71
    [29] C.H. Lin, J.G. Duh, B.S. Yau, Processing of chromium tungsten nitride hard coatings for glass molding, Surface and Coatings Technology 201 (2006) 1316-1322
    [30] Y. Zhang, G. Yan, K. You, F. Fang, Study onα-Al2O3 anti-adhesion coating for molds in precision glass molding, Surface and Coatings Technology 391 (2020) 125720
    [31] Y.I Chen, Y.E Ke, M.C. Sung, L.C. Chang, Rapid thermal annealing of Cr–Si–N, Ta–Si–N, and Zr–Si–N coatings in glass molding atmospheres, Surface and Coatings Technology 389 (2020) 125662
    [32] S.H. Lee, I.H. Ko, T.Y. Kim, Surface failure analysis of AlCrN coating on WC substrate subjected to high-temperature oxidation in glass-molding machine, Applied Surface Science 452 (2018) 210-216
    [33] D. Zhong, E. Mateeva, I. Dahan, J.J. Moore, G.G.W. Mustoe, T. Ohno, J. Disam, S. Thie, Wettability of NiAl, Ni-Al-N, Ti-B-C, and Ti-B-C-N films by glass at high temperatures, Surface and Coatings Technology 133–134 (2000) 8-14
    [34] S.B. Hung, C.J. Wang, Y.Y. Chen, J.W. Lee, C.L. Li, Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings, Surface and Coatings Technology 375 (2019) 802-809
    [35] Y.Y. Chen, S.B. Hung, C.J. Wang, W.C. Wei, J.W. Lee, High temperature electrical properties and oxidation resistance of V-Nb-Mo-Ta-W high entropy alloy thin films, Surface and Coatings Technology 375 (2019) 854-863
    [36] Y.H. Yang, D.J. Chen, F.B. Wu, Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power, Surface and Coatings Technology 303 (2016) 32-40
    [37] S.K. Kim, B.C. Cha, Deposition of tantalum nitride thin films by D.C. magnetron sputtering, Thin Solid Film 475 (2005) 202-207
    [38] Y.H. Yang, F.B. Wu, Microstructure evolution and protective properties of TaN multilayer coatings, Surface and Coatings Technology 308 (2016) 108-114
    [39] Y.I Chen, K.Y. Lin, H.H. Wang, K.C. Lin, Thermal stability of TaN, CrTaN, TaSiN, and CrTaSiN hard coatings in oxygen-containing atmospheres, Surface and Coatings Technology 259 (2014) 159-166
    [40] C.H. Liu, W. Liu, Y.H. Wang, Y. Wang, Z.An, Z.X. Song, K.W. Xu, Interface stability and microstructure of an ultra thin a-Ta/graded Ta(N)/TaN multilayer diffusion barrier, Microelectronic Engineering 98 (2012) 80-84
    [41] B.C. Li, H.M. Zhu, C.J. Qiu, D.K. Zhang, Development of high strength and ductile martensitic stainless steel coatings with Nb addition fabricated by laser cladding, Journal of Alloys and Compounds 822 (2020) 154985
    [42] Svetlana Barannikova, Galina Schlyakhova, Olga Maslova, Yulia Li, Zuev Lev, Fine structural characterization of the elements of a Nb-Ti superconducting cable, Journal of Materials Research and Technology 8 (2019) 323-332
    [43] Z. Han, X. Hu, J. Tian, G. Li, G. Mingyuan, Magnetron sputtered NbN thin films and mechanical properties, Surface and Coatings Technology 179 (2004) 188-192
    [44] R.M. Fonseca, R.B. Soares, R.G. Carvalho, E.K. Tentardini, V.F.C. Lins, M.M.R. Castro, Corrosion behavior of magnetron sputtered NbN and Nb1-xAlxN coatings on AISI 316L stainless steel, Surface and Coatings Technology 378 (2019) 124987
    [45] Y. Ufuktepe, A.H. Farha, S.I.Kimura, T. Hajiri, K. Imura, M.A. Mamun, F. Karadag, A.A. Elmustafa, H.E. Elsayed-Ali, Superconducting niobium nitride thin films by reactive pulsed laser deposition, Thin Solid Films 545 (2013) 601-607
    [46] Harish C. Barshilia*, M. Surya Prakash, Aithu Poojari, K.S. Rajam, Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process, Thin Solid Films 460 (2004) 133-142
    [47] Barnali Biswas, Yashodhan Purandare, Imran Khan, Papken Eh. Hovsepian, Effect of substrate bias voltage on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings, Surface and Coatings Technology 344 (2018) 383-393
    [48] T. Wang, Y. Jin, L. Bai, G. Zhang, Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering, Journal of Alloys and Compounds 729 (2017) 942-948
    [49] Sravan Kumar Thimmappa, Brahma Raju Golla, VV Bhanu Prasad, Bhaskar Majumdar Bikramjit Basu, Phase stability, hardness and oxidation behaviour of spark plasma sinteredZrB2-SiC-Si3N4composites, Ceramics International 45 (2019) 9061-9073
    [50] J.J. Yu, W.M. Guo, W.X. Wei, H.T. Lin, C.Y. Wang, Fabrication and wear behaviors of graded Si3N4ceramics by the combination of two-step sintering andβ-Si3N4 seeds, Journal of the European Ceramic Society 38 (2018) 3457-3462
    [51] C. Wang, H. Wang, R. Qiao, C. Zhang, L. Chen, Fabrication and thermal shock resistance of β-Si3N4-basedenvironmental barrier coating on porous Si3N4 ceramic, Ceramics International 42 (2016) 14222-14227
    [52] L. Castaldi, D. Kurapov, A. Reiter, V. Shklover, P. Schwaller, J. Patscheider, High temperature phase changes and oxidation behavior of Cr–Si–N coatings, Surface and Coatings Technology 202 (2007) 781-785
    [53] H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, G.P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Materials Science and Engineering A 500 (2009) 104-108
    [54] Daiane Roman, Juliane Bernardi, Cintia L.G. de Amorim, Fernando S. de Souza, Almir Spinelli, Cristiano Giacomelli, Carlos A.,Figueroa, Israel J.R. Baumvol, Rodrigo L.O. Basso, Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering, Materials Chemistry and Physics 130 (2011) 147-153
    [55] O.V. Maksakova, S. Simoẽs, A.D. Pogrebnjak, O.V. Bondar, Ya.O. Kravchenko, T.N. Koltunowicz, Zh.K. Shaimardanov, Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties, Journal of Alloys and Compounds 776 (2019) 679-690
    [56] Deng Jianxin, Liu Jianhua, Zhao Jinlong, Song Wenlong, Niu Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear 264 (2008) 298-307
    [57] A. Janse van Vuuren, V.A. Skuratov, V.V. Uglov, J.H. Neethling, S.V. Zlotski, Radiation tolerance of nanostructured ZrN coatings against swift heavy ion irradiation, Journal of Nuclear Materials 442 (2013) 507-511
    [58] Ying Wang, Chun-hui Zhao, Fei Cao, Da-wei Yang, Barrier capability of Zr–N films with different density and crystalline structure in Cu/Si contact systems, Materials Letters 62 (2008) 3761-3763
    [59] Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, C.H. Wu, A comparative study of the oxidation behavior of Cr2N and CrN coatings, Thin Solid Films 544 (2013) 515-520
    [60] Y.H. Cheng, T. Browne, B. Heckerman, Mechanical and tribological properties of CrN coatings deposited by large area filtered cathodic arc, Wear 271 (2011) 775-782
    [61] Qiang Chen, Yongzhi Cao, Zhiwen Xie, Tian Chen, Yuanyuan Wan, He Wang, Xu Gao, Yan Chen, Yanwen Zhou, Yuanyuan Guo, Tribocorrosion behaviors of CrN coating in 3.5 wt% NaCl solution, Thin Solid Films 622 (2017) 41-47
    [62] Bo Gao, Xiaoye Du, Yanhuai Li, Shuheng Wei, Xiaodong Zhu, Zhongxiao Song, Effect of deposition temperature on hydrophobic CrN/AlTiN nanolaminate composites deposited by Multi-Arc-Ion Plating, Journal of Alloys and Compounds 797 (2019) 1-9
    [63] Xiaoyan Guan, Yongxin Wang, Qunji Xue, Effects of constituent layers and interfaces on the mechanical and tribological properties of metal (Cr, Zr)/ceramic (CrN, ZrN) multilayer systems, Applied Surface Science 502 (2020) 144305
    [64] Eun Young Choi, Myung Chang Kang, Dong Hee Kwon, Dong Woo Shin, Kwang Ho Kim, Comparative studies on microstructure and mechanical properties of CrN, Cr–C–N and Cr–Mo–N coatings, Journal of Materials Processing Technology 187–188 (2007) 566–570
    [65] Shujing Zheng, Zhaobing Cai, Jibin Pu, Chun Zeng, Shengyu Chen, Ran Chen, Liping Wang, A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with outstanding anti-corrosion property, Applied Surface Science 483 (2019) 870-874
    [66] Chien-Yao Huang, Jyh-Rou Sze, Kuo-Cheng Huang, Chao-Hui Kuo, Shih-Feng Tseng, Chang-Pin Chou, The Glass-Molding Process for Planar-Integrated Micro-Optical Component, Optical Review 18 (2011) 96-98
    [67] W. H. Kao, High-speed drilling performance of coated micro-drills wit hZr–C:H:Nx% coatings, Wear 267 (2009) 1068-1074
    [68] Hwai-Te Hsueh, Wan-Jui Shen, Ming-Hung Tsai, Jien Wei Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx, Surface and Coatings Technology 206 (2012) 4106-4112
    [69] B. Ren, S.Q.Yan, R.F. Zhao, Z.X .Liu, Structure and properties of (AlCrMoNiTi)Nx and (AlCrMoZrTi)Nx films by reactive RF sputtering, Surface and Coating Technology 235 (2013) 764-772
    [70] Jin Kun Xiao, Hong Tan, Yu Qing Wu, Juan Chen, Chao Zhang, Microstructure and wear behavior of FeCoNiCrMn high entropy alloy coating deposited by plasma spraying, Surface and Coating Technology 385 (2020) 125430
    [71] Kangsen Li, Gang Xu, Xinfang Huang, Qiang Chen, Zhiwen Xie, Feng Gong, Surface evolution analysis of CrxWyNz coatings on WC mold in glass molding process, Surface and Coating Technology 393 (2020) 125839
    [72] 侯祺津,玻璃熱壓模具鍍膜之研究,交通大學機械工程學系碩士論文,2014年
    [73] Zhen Gu, Shengqi Xi, Chongfeng Sun, Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings, Journal of Alloys and Compounds 819 (2020) 152986
    [74] Yan Cui, Junqi Shen, Sunusi Marwana Manladan, Keping Geng, Shengsun Hu, Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature, Applied Surface Science 512 (2020) 145736

    無法下載圖示 校內:2025-06-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE