簡易檢索 / 詳目顯示

研究生: 陳威穎
Chen, Wei-Ying
論文名稱: 相似轉換參數估算比較研究應用於多測站光達點雲之套合
Comparison Study of Similarity Transformation Parameter Estimation for Multi-station LiDAR Point Clouds
指導教授: 林昭宏
Lin, Chao-Hung
尤瑞哲
R.J., You,
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 60
中文關鍵詞: 七參數相似轉換非疊代轉換地面光達
外文關鍵詞: Similarity transformation, Non-iterative, Ground-based Lidar
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 七參數轉換為一種非線性轉換式,倘若要解算轉換參數,普遍將轉換式線性化,並以疊代的方法計算參數估計值。本文比較研究相似轉換參數解之非疊代法,是為一種不須設置初始值,更不需要透過迭代來求最佳估值。目前已知的非疊代求解轉換參數法可以歸納為三個步驟:依序求得尺度參數、三個旋轉參數、三個平移參數。應用於多測站光達點雲時,因各測站的點雲資料均屬於不同局部坐標系統,必須透過轉換各站的點雲整合至統一的坐標系統中。
    研究以特徵為基礎(Feature-based)的方式,萃取測站間的共軛點坐標,以不同的相似轉換解法解算七參數。將各測站的點雲轉換到同一個坐標框架系統中,完成測站點雲的整合,並比較相似轉換解法間的差異性。
    實驗分成模擬資料以及實際資料,透過模擬資料分析方法間的差異及關連性,並在實際資料中確認方法的可行性。在模擬資料的成果中,針對參數解算上的精度,疊代方法仍較非疊代的求解來的好。以效率來看,非疊代法的解算速度較快,相對於疊代法來的直觀且簡易。實驗中分析於控制點以外的檢核點產生的問題,並建議若以疊代方式解算,需將使控制點分布在觀測點之周圍,觀測物體變形情形會相對較非疊代解來的好。
    實際資料確切能夠透過兩種方法獲得轉換參數,也成功將不同測站之點雲擬合至相同坐標框架中,因人工選點以及測量範圍的誤差應造成更嚴重的誤差,所以能夠確切本研究之實際資料的誤差精度為公分級。

    The seven-parameter transformation is a nonlinear transformation. If the transformation parameters are to be solved, the transformation is generally linearized and the parameter estimates are calculated in an iterative manner. This paper compares the non-inversion method of the similar transformation parameter solution, which is not necessary to set the initial value, and does not need to find the best estimate through iteration.
    In a feature-based approach, the coordinates of the conjugate points between the stations are extracted, and the seven parameters are solved by different similar transformation solutions. The point cloud of each station is converted into the same coordinate frame system, the integration of the measurement site cloud is completed, and the difference between the similar transformation solutions is compared.
    The experiment is divided into simulation data and actual data. Through the simulation data analysis method differences and correlations, and confirm the feasibility of the method in the actual data.
    In the results of the simulation data, the iterative method is still better than the non- iterative solution for the accuracy of the parameter solution. In terms of efficiency, the non-aliasing method is faster and easier to implement than the iterative method.
    It is suggested that if the solution is solved in an iterative manner, it is necessary to distribute the control points around the observation object, and the deformation of the observation object will be better than that of the non-inversion solution.
    The actual data can be obtained by two methods.
    Because the error of manual selection and measurement range should cause more serious errors, the error of the actual data of this study can be determined as centimeters.

    摘要.................................................................. i English extend abstract.............................................. ii 目錄............................................................... xiii 圖目錄.............................................................. xvi 表目錄............................................................. xvii 第1章 緒論 ......................................................... 1 1-1 研究背景 ................................................... 1 1-3 相關研究 ................................................... 3 1-4 研究目的與方法 ............................................. 4 第2章 文獻回顧 ..................................................... 7 2-1 地面光達 ................................................... 9 2-1-1 橫掃式地面光達 ........................................ 11 2-1-2 縱掃式地面光達 ........................................ 12 2-1-3 多測站光達測量 ........................................ 13 2-2 坐標轉換 .................................................. 14 2-3 相似轉換 .................................................. 15 2-4 線性化轉換參數求解方法 .................................... 18 第3章 非疊代解算法 ................................................ 22 3-1 Cayley變換 ................................................ 22 3-2 相似轉換之旋轉矩陣 ........................................ 23 xv 3-3 非疊代轉換法 .............................................. 25 3-3-1 尺度參數解算 .......................................... 25 3-3-2 旋轉參數解算 .......................................... 31 3-3-3 平移參數解算 .......................................... 34 第4章 數值驗證與分析 .............................................. 36 4-1 反求旋轉角 ................................................ 36 4-2 實驗流程與步驟 ............................................ 39 4-3 多測回模擬實驗 ............................................ 41 4-3-1 模擬說明 .............................................. 41 4-3-2 模擬步驟與程序 ........................................ 41 4-3-3 模擬結果與分析 ........................................ 43 4-4 分布點偏移實驗 ............................................ 48 4-4-1 模擬說明 .............................................. 48 4-4-2 模擬結果與分析 ........................................ 49 4-5 實際資料實驗 .............................................. 52 4-5-1 實際測區與資料 ........................................ 52 4-5-2 實驗成果 .............................................. 54 第5章 結論 ........................................................ 57 參考文獻............................................................. 59

    尤瑞哲(2003)。測量坐標系統。成功大學側量與空間資訊學系,台南。
    周志成(2015)。線性代數。交大出版社,新竹。
    樂怡岑(2010)。相似轉換之非疊代參數估計法。國立台灣大學土木工程學系碩士論文,台北。
    劉德烈(2004)。地面光達點雲資料的平差結合與影像敷貼,國立成功大學測量及空間資訊學系碩士論文,台南。
    Albertz, Kreiling. (1975). Photogrammetric Guide. Herbert Wichmann Verlag, Karlsruhe,58–60.
    Arun,K.S., Huang,T.S., Blostein,S.D. (1987). Least-squares fitting of two 3-D point sets. IEEE Trans.PAMI, 9(5), 698-700.
    Awange J.L,and Grafarend E.W.(2002). Linearized Least Squares and nonlinear Gauss-Jacobi combinatorial algorithm applied to the 7-parameter datum transformation C7(3) problem, Journal of Geodesy, Springer Berlin Heidelberg, 77 (1), 66-76.
    Awange, J.L., and Grafarend, E.W. (2003). Closed form solution of the overdetermined nonlinear 7 parameter datum transformation. Allgemeine Vermessungs Nachrichten (AVN) 110, 130-148.
    Awange, J.L., and Grafarend, E.W. (2005). Solving Algebraic Computational Problems in Geodesy and Geoinformatics, Springer, Berlin.
    Albertz J, and Kreiling W (1975).Photogrammetric Guide. Herbert Wichmann Verl., Karlsruhe, 58-60.
    Horn B.K.P. (1987). Closed form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America, 4, 629-642.
    60
    Han J.Y. (2010). Noniterative Approach for Solving the Indirect Problems of Linear Reference Frame Transformations.
    Závoti J (2012). A simple proof of the solutions of the Helmert and the overdetermined nonlinear 7-parameter datum transformation. Acta Geod. Geoph. Hung., 47(4), 453-464.
    Závoti J., and Fritsch D. (2011).A first attempt at a new algebraic solution of the exterior orientation of photogrammetry. ActaGeod. Geoph. Hung., 46, 317-325.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE