簡易檢索 / 詳目顯示

研究生: 呂孜亭
Lu, Tzu-ting
論文名稱: 超音波馬達驅動平台定位及力量控制之研究
A Study on Position and Force Control of the Ultrasonic Motor Driven Table
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 86
中文關鍵詞: 超音波馬達自調式模糊控制器
外文關鍵詞: Self-Tuning Fuzzy Controller, Ultrasonic Motor
相關次數: 點閱:81下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用超音波馬達作為致動器,驅動滾珠螺桿平台做定位及力量控制(非同時控制)。定位控制部分,利用氣壓缸及比例壓力閥模擬負載力,探討在不同負載情況下定位的效果。本文使用雙模自調式模糊控制器來完成,針對超音波馬達轉速的低重現性以及死區飄移現象,提出以脈寬調變(PWM)的方式驅動馬達來加以改善,並以模糊推論的方式補償死區飄移現象,提高定位的精度及重現性。力量控制部分,由於超音波馬達具有斷電保持轉矩的特性,使得超音波馬達驅動系統的力量控制類似於定位控制,因此,本文在與定位控制相同之架構下,修正一些控制器參數,完成系統的力量控制。

    The subject of this thesis is to develop a platform control system using rotary ultrasonic motor. This thesis can be separated into two parts: one is position control, the other is force control. In position control system, a pneumatic cylinder and a pneumatic proportional valve are used to simulate loading. The hybrid self-tuning fuzzy controller is proposed in this thesis. Because of the speed of ultrasonic motor has phenomenon of low reconstruction and uncertain dead-zone, pulse width modulation method is proposed in order to improve the phenomenon. Finally, fuzzy dead-zone compensator is used to compensate the uncertain dead-zone phenomenon in order to achieve more precision position control. In force control system, Because of the ultrasonic motor has a characteristic of high turnoff brake torque, force control of ultrasonic motor driven system is very similar to position control in many situation. Therefore, the force controller of ultrasonic motor driven system uses the same construction with position controller in this thesis, and altering some parameter to achieve force control.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究動機 1 1-2 超音波馬達控制發展之文獻回顧 3 1-3 研究目的 4 1-4 本文架構 5 第二章 超音波馬達簡介 7 2-1 壓電效應 7 2-2 超音波馬達工作原理 8 2-3 超音波馬達和電磁馬達的比較 11 第三章 超音波馬達驅動平台之精密控制系統 13 3-1 超音波馬達驅動平台控制系統 13 3-1-1 位置控制系統 13 3-1-2 力量控制系統 14 3-2 實驗設備 16 3-3 系統數學模式推導 21 3-3-1 超音波馬達數學模式 21 3-3-2 減速機模型 27 3-3-3 滾珠螺桿模型 28 3-3-4 系統轉移函數 29 3-4 系統特性與驅動方式的選擇 31 3-4-1 電壓驅動控制下之系統特性 32 3-4-2 脈寬調變驅動控制下之系統特性 33 3-4-3 脈寬調變與電壓驅動控制之比較 35 第四章 控制理論 39 4-1 模糊控制理論 39 4-1-1 模糊化界面 41 4-1-2 決策邏輯 42 4-1-3 解模糊化界面 42 4-1-4 知識庫 43 4-2 自調式模糊控制理論 44 第五章 控制器設計 47 5-1 定位控制器設計 47 5-1-1 誤差邊界 48 5-1-2 控制命令之模糊推論 49 5-1-3 自調式尺度因子 52 5-1-4 模糊死區補償 54 5-1-5 控制器整體說明 58 5-2 力量控制器設計 58 第六章 實驗結果與討論 61 6-1 定位控制 61 6-1-1 無負載之定位控制 61 6-1-2 有承載荷重之定位控制 66 6-1-3 有軸向負載之定位控制 71 6-2 力量控制 78 6-2-1 步階力量控制 78 6-2-2 三角波力量追蹤控制 79 6-2-3 正弦波力量追蹤控制 80 第七章 結論 84 參考文獻 85

    【1】Lin,F.J., “Fuzzy Adaptive Model-Following Position Control for Ultrusonic Motor”,IEEE Trans. On Power Electronics,Vol.12,No.2,p261-268,1997.

    【2】Lin,F.J.,Wai,R.J.,Shyu,K.K.,and Liu,T.M. “Recurrent Fuzzy Neural Network Control for Piezoelectric Ceramic Linear Ultrosonic Motor Drive”, IEEE Trans. Ultrosonics, Ferroelectrics, Freq.Contr., Vol.48, No.4, p900-913, 2001.

    【3】Tomonobu Senjyu,Tomohiro Kashiwagi,Katsumi Uezato, “Position Control of Ultrasonic Motors Using MRAC and Dead-Zone Compensation With Fuzzy Inference”,IEEE Trans. On Power Electronics,Vol.17,No.2,p265-272,2002.

    【4】Lin,F.J.,Wai,R.J.,and Chen,M.P.,“Wavelet Neural Network Control for Linear Ultrosonic Motor Drive via Adaptive Sliding-Mode Technique”, IEEE Trans.
    Ultrosonics, Ferroelectrics, Freq.Contr., Vol.50, No.6, p686-698,2003.

    【5】Wai,R.J., Lin,F.J., and Peng Y.F.,“Adaptive Hybrid Control for Linear Piezoelectric Ceramic Motor Drive Using Diagonal Recurrent CMAC Network”, IEEE Trans. On Neural Networks, Vol.15, No.6, p1491-1506, 2004.

    【6】顏吉永,“超音波馬達之滑動模式控制”,國立清華大學工程與系統科學研究所博士論文,2004.

    【7】Tomonobu Senjyu,Tomohiro Yoshida,Katsumi Uezato,Toshihisa Funabashi,“Position Control for Ultrasonic Motors Using Backstepping Control and Dead-Zone Compensation with Fuzzy Inference”,Electrical Engineering in Japan, Vol.123-D,No.9,p69-77,2004.

    【8】Kanya Tanaka,Masato Oka,Akihiko Uchibori,Youichirou Iwata,Hiroshi Morioka,“Precise Position Control of an Ultrasonic Motor Using the PID Controller Combined with NN”, Electrical Engineering in Japan,Vol.146, No.3,p46-54,2004

    【9】賴子發,“超音波馬達智慧型奈米定位控制系統之研究”,台灣大學機械工程研究所碩士論文,2005.

    【10】Tomohiro Yoshida,Tomonobu Senjyu,Mitsuru Nakamura,Naomitsu Urasaki,Hideomi Sekine, “Position Control of Ultrasonic Motors Using Dead-Zone Compensation with Fuzzy Neural Network”,Electric Power Components and Systems,34:1253-1266,2006.

    【11】李政學,“雙模態超音波馬達之動態建模與控制”,中正大學機械工程研究所碩士論文,2001.

    【12】L.A. Zadeh, “Fuzzy sets” ,Information and Control, Vol. 8,p338-353, 1965.

    【13】E. Mamdani, “Application of fuzzy algorithm for control of simple dynamic plant” ,Proc. IEE, Vol. 121, No. 12,p1585-1588, 1974.

    【14】C.C. Lee, “Fuzzy logic in control systems:fuzzy logic controller-PartⅠ” ,IEEE Trans. SMC, Vol. 20, No. 2,p404-418, 1990.

    【15】C.C. Lee, “Fuzzy logic in control systems:fuzzy logic controller-PartⅡ” ,IEEE Trans. SMC, Vol. 20, No. 2,419-435, 1990.

    【16】L.A. Zadeh, “Outline of a new approach to the analysis comples systems and decision process” ,IEEE Trans. Syst. Man Cybern. ,Vol. SMC-3, No.1,28-44,1973.

    【17】Y.F. Li & C.C. Lau, “Development of fuzzy algorithms for servo systems” ,IEEE Control Systems Magazine, Vol. 9, No. 3, p 65-72, 1989.

    【18】王進德、蕭大全,”類神經網路與模糊控制理論入門”,全華科技,1994.

    【19】D.Driankov, H.Hellendoorn, and M. Teinfrank. “An Introduction to Fuzzy control”, Springer-Verlag Berlin Heidelberg, 1993.

    【20】 Mudi, Rajani K.; Pal, Nikhil R.,”Robust self-tuning scheme for PI- and PD-type fuzzy controllers” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 1,p2-16, 1999.

    【21】R. Palm, “scaling of fuzzy controller using the cross-correlation”, IEEE Trans. Fuzzy Syst., Vol. 26,No. 5,p85-92, 1996.

    下載圖示 校內:2010-01-14公開
    校外:2010-01-14公開
    QR CODE