簡易檢索 / 詳目顯示

研究生: 楊朝竣
Yang, Chao-Chun
論文名稱: 以氧化鋅奈米柱改善氧化鎳電致變色元件性能之研究
Improving performances of nickel oxide electrochromic device by ZnO nanowire arrays
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: 氧化鋅奈米柱電致變色氧化鎳
外文關鍵詞: ZnO nanowire arrays, electrochromic, nickel oxide
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗所用之電致變色材料為氧化鎳,因其具有良好光學調節性,穩定性,價格低廉等優點。在本實驗所選擇之製程為化學水浴法,以1M的硫酸鎳,0.25M過硫酸鉀與氨水作為前驅溶液使其在基板表面沈積氫氧化鎳薄膜,並經由熱處理使其形成氧化鎳薄膜。本實驗分別以ITO基板與氧化鋅奈米柱基板沈積氧化鎳薄膜,探討成長參數對薄膜形態與電致變色性質的影響,並比較兩種基板上電致變色元件性能之差異。
    本實驗使用溶膠凝膠法搭配低溫水溶液法成長氧化鋅奈米棒。先在ITO基板上旋轉塗佈氧化鋅的種晶層,再由硝酸鋅及氫氧化鉀所配置成的溶液進行氧化鋅奈米柱之成長,藉由各項參數的控制製作不同形態之ZnO奈米柱陣列。在本實驗中選擇以1M醋酸鋅的sol-gel溶液進行200℃熱處理後並以0.5M硝酸鋅與4M KOH成長2hr所得之氧化鋅奈米柱陣列,作為電致變色元件的氧化鎳變色層之基材,使其發揮高表面積之優點,提高電致變色元件之反應性能。
    結果顯示,以CBD之方式製備氧化鎳薄膜時,前驅液中之氨水量提高使得氧化鎳薄膜之微結構尺寸增大,表面緻密度下降;而沈積時間與薄膜厚度呈線性關係成長,藉由適當成長參數控制在ITO與氧化鋅奈米柱基板上成功製備出氧化鎳薄膜。
    以ITO為基板所做出元件之著色效率為42;但以氧化鋅奈米柱為基材之著色效率可達47,且以氧化鋅作為電極可提升顏色轉換速度,可知氧化鋅奈米柱作為反應電極可提升電致變色之效能。

    This research describes a combined process of sol-gel method and room-temperature aqueous solution method for growing nanorods. First, the ITO substrate was spin-coated with ZnO seed layer. And then ZnO nanowire arrays were grown on the substrate in a solution of zinc nitrate hexahydrate and potassium hydroxide. The process of growing the ZnO nanowire arrays with different experimental parameters was performed to prepare ZnO nanowire arrays of different morphologies.
    In this study, electrochromic nickel oxide films were deposited by chemical bath deposition. Precursors of nickel sulfate, potassium and ammonia were prepared and then nickel oxide thin films were deposited on the two substrates respectively. The transmittance and electrochromic properties of NiO films are influenced by the thickness and surface area. Compared with the performance of NiO on different substrates, the coloration efficiency on ZnO substrate is 47, higher than that on ITO substrate of 42. An improved electrochromic property of ZnO substrate comparing to ITO substrate is attributed to the increased electrode area.

    總目錄 摘要 I Abstract II 誌謝 III 總目錄. IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 第二章 理論基礎 4 2.1變色材料比較 4 2.2電致變色元件 7 2.2.1電致變色的發展歷史 7 2.2.2 電致色變元件系統 8 2.3氧化鋅材料 14 2.3.1氧化鋅之結構與應用 14 2.3.2 氧化鋅奈米結構合成方法 16 2.4 水溶液法合成一維氧化鋅奈米結構 18 2.4.1 一維氧化鋅奈米結構之演進 18 2.4.2 水溶液法合成氧化鋅奈米柱陣列 21 2.5氧化鎳材料 24 2.5.1氧化鎳基本性質與結構 24 2.5.2氧化鎳電致變色之機制 26 2.5.3製備氧化鎳之方法 28 第三章 實驗方法與步驟 30 3.1實驗藥品 30 3.2實驗流程圖 31 3.3實驗流程 33 3.3.1試片清洗 33 3.3.2種晶溶液配置 33 3.3.3水溶液法成長 33 3.3.4氧化鎳成長 33 3.3.5電致變色元件封裝 34 3.4分析與鑑定 35 3.4.1掃瞄式電子顯微鏡(SEM) 35 3.4.2光學性質分析 35 3.4.3電致變色性質量測 35 第四章 結果與討論 37 4.1水溶液法成長氧化鋅奈米柱陣列 37 4.1.1硝酸鋅濃度對氧化鋅奈米棒的影響 37 4.1.2氫氧化鉀的濃度對氧化鋅奈米棒成長的影響 42 4.1.3 氧化鋅成長時間的影響 46 4.2在ITO基板上沈積氧化鎳薄膜 50 4.2.1 退火溫度對薄膜之影響 50 4.2.2 氨水含量對薄膜之影響 54 4.2.3 成長時間對薄膜之影響 57 4.2.4 電致變色性質分析 60 4.3在ZnO基板上沈積氧化鎳薄膜 76 4.3.1氨水含量對薄膜之影響 76 4.3.2成長時間對薄膜之影響 78 4.3.3電致變色性質分析 80 4.4電解質濃度對電致變色的影響 92 4.4.1光學性質分析 92 4.4.2 電致變色性質影響 94 4.5基板對電致變色之性質比較 97 4.5.1 不同基板之電致變色壽命與效率比較 97 4.5.2 組成元件之電致變色性質 101 第五章 結論 104 參考文獻 106 圖目錄 Fig.1-1 The periodic table of elements, excluding the lanthanides and actinides. The shaded boxes refer to the transition metals whose oxides have well-documented cathodic and anodic electrochromism 3 Fig.2-1 Electrochromic device design, illustrating the movement of ions under an applied voltage 8 Fig.2-2 ZnO wurtzite structure 14 Fig.2-3 Aggregation and Ostwald ripening in growth of the ZnO crystals 19 Fig.2-4 Idealized growth habit of the ZnO crystal. 22 Fig.2-5 Schematic diagram of zinc oxide crystal structure. 23 Fig.2-6 Schematic diagram of nickel oxide crystal structure. 24 Fig.3-1 Flow chart for preparing ZnO nanowires. 31 Fig.3-2 Flow chart for preparing NiO film. 32 Fig.4-1 SEM images of ZnO nanowires grown in (a)(b)0.3M (c)(d)0.35M (e)(f)0.4M (g)(h)0.45M and (i)(j)0.5M Zn(NO3)2•6H2O and 4M KOH for 2hr. 40 Fig.4-2 Length of ZnO nanowire arrays prepared in solutions of various concentrations of Zn(NO3)2•6H2O. 41 Fig.4-3 SEM images of ZnO nanowires grown in 0.5M Zn(NO3)2•6H2O and (a)(b)2M (c)(d)2.5M (e)(f)3M (g)(h)3.5M and (i)(j)4M KOH for 2hr. 44 Fig.4-4 Length of ZnO nanowire arrays prepared in various concentrations of KOH. 45 Fig.4-5 SEM images of ZnO nanowires grown in 0.5M Zn(NO3)2•6H2O and 4M KOH for (a)(b)10min(c)(d)30min(e)(f)1hr(g)(h)1.5hr and (i)(j)2hr. 48 Fig.4-6 Length of ZnO nanowire arrays prepared for various growth time. 49 Fig.4-7 SEM images of NiO thin film deposited and annealed at (a)(b)300℃ (c)(d)350℃ and (e)(f)400℃. 51 Fig.4-8 XRD diffraction patterns of NiO thin film annealed at (a)300℃ (b)350℃ and (c)400℃. 53 Fig.4-9 SEM images of NiO thin film deposited on ITO substrate with 10.6M NH3 of (a)(b)10ml(c)(d)12.5ml (e)(f)15ml (g)(h)17.5ml and (i)(j)20ml. 56 Fig.4-10 Thickness of NiO thin film prepared with various volume of NH3. 56 Fig.4-11 SEM images of NiO thin film deposited on ITO substrate for (a)(b)10min (c)(d)20min (e)(f)30min (g)(h)1hr. 59 Fig.4-12 Thickness of NiO thin film prepared for various growth time. 59 Fig.4-13 Transmittance spectra of NiO films after annealing at various temperatures. (a)bleached state (b)colored state. 61 Fig.4-14 Transmittance spectra of NiO films from soluitions with various volume of NH3. (a)bleached state (b)colored state. 63 Fig.4-15 Transmittance spectra of NiO films for various growth times. (a)bleached state (b)colored state. 65 Fig.4-16 Cyclic voltammograms of NiO thin film on ITO substrate with 10.6M NH3 of (a)10ml (b)12.5ml (c)15ml (d)17.5ml (e)20ml. 71 Fig.4-17 The coloration efficiency of NiO films prepared with various concentration of NH3. 71 Fig.4-18 Cyclic voltammograms of NiO thin film on ITO substrate for (a)10min (b)20min (c)30min (d)1hr 74 Fig.4-19 The coloration efficiency of NiO films prepared for various growth times. 75 Fig.4-20 SEM images of NiO thin film deposited on ZnO nanowire arrays substrate with NH3 of (a)6ml (b)7ml (c)8ml (d)9ml (e)10ml.. 77 Fig.4-21 SEM images of NiO thin film deposited on ZnO nanowire arrays substrate for (a)1min(b)2min(c)3min(d)4min (e)10min. 79 Fig.4-22 Transmittance spectra of NiO films on ZnO nanowire arrays substrate with various volume of NH3 (a)bleached state (b)colored state. 81 Fig.4-23 Cyclic voltammograms of NiO thin film on ZnO nanowire arrays substrate with NH3 of (a)6ml(b)7ml(c)8ml(d)9ml (e)10ml NH3. 85 Fig.4-24 The coloration efficiency of NiO films on ZnO nanowire arrays substrate prepared with various volume of NH3. 85 Fig.4-25 Transmittance spectra of NiO films on ZnO substrate for various growth time (a)bleached state (b)colored state. 87 Fig.4-26 Cyclic voltammograms of NiO thin film on ZnO substrate for (a)1min(b)2min(c)3min(d)4min (e)10min. 91 Fig.4-27 The coloration efficiency of NiO films on ZnO substrate prepared for various growth time.. 91 Fig.4-28 Transmittance spectra of NiO films on ITO substrate with various concentrations of electrolyte (a)bleached state (b)colored state. 93 Fig.4-29 Cyclic voltammograms of NiO thin film on ZnO substrate with KOH electrolyte of (a)0.1M (b)0.5M (c)1M 96 Fig.4-30 The coloration efficiency of NiO films on ZnO substrate with various concentration of electrolyte. 96 Fig.4-31 SEM images of NiO thin film deposited on (a)(b) ITO substrate and (c)(d) ZnO nanowire arrays substrate. 98 Fig.4-32 Cyclic voltammograms of NiO thin films on (a) ITO substrate and (b) ZnO nanowire arrays substrate. 99 Fig.4-33 Electrochromic performance photographs of NiO thin film on (a)(b)ITO substrate and (c)(d)ZnO nanowire arrays substrate.. 100 Fig.4-34 Absorbance spectra of NiO films deposited on (a) ITO substrate (b) and ZnO nanowire arrays substrate.. 102 Fig.4-35 Transmittance spectra of NiO films deposited on (a) ITO substrate (b) and ZnO nanowire arrays substrate. 103 表目錄 Table.2-1 Comparison of the electrochromic material. 6 Table.2-2 Various chromic materials of transition metal oxides 13 Table.2-3 The properties of zinc oxide 15 Table.2-4 The electrochromic mechanism of NiO films prepared by various methods. 27 Table.4-1 Decline of the cyclic voltammograms of NiO thin film on ITO substrate with 10.6M NH3 of various volume 71 Table.4-2 Charge intercalated during electrochromic cycling at different deposition time. 75

    [1]焦小浣, 胡文旭, 陳玲, 光窗透明材料的實驗研究,太陽能學報 18 , [4] (1997)365~370.
    [2]Granqvist C.G, Azens A, Hjelm A, Kullman L, Niklasson GA, Ronnow D, Mattsson MS, Veszelei M, Vaivars G, “Recent advances in electrochromics for smart windows applications”,Solar Energy, 63 [4] (1998)199-216
    [3]何國川, 電話學與無窗時代, 化工, 37 [3] (1990)32-42
    [4]鄧耀宗,“變色窗技術發展與節能效益”, 化工技術, 第八卷, 第六期, 2000年6月。
    [5]J. R. Platt, “Electrochromism, a possible change of color producible indyes by an electric field”, The Journal of Chemical Physics, 34 [3] (1961)862-863.
    [6] B. W. Faughnan, R. S. Crandall and P. M. Heyman, “Electrochromismin WO3 amorphous films”, R.C.A. Review, 36 (1975)177-197.
    [7] C.M. Lampert, C.G. Granqvist (Eds.), Large-Area Chromogenics: Materials and Devices for Transmittane Control, SPIE—The International Society for Optical Engineering, Bellingham, USA, 1990.
    [8]李玉華,“透明導電膜及其應用”, 科儀新知, 第十二卷, 第一期12 [1] (1980)94-102
    [9] 陳為峰, “以化學法製備電致色變氧化鎳薄膜之研究”, 逢甲大學化學工程學系博士論文(2006)
    [10] C. G. Granqvist, “Electrochromic devices”, Journal of the European Ceramic Society, 25(2005)2907-2912.
    [11] N. Can and V. V. Truong, “Electrical and optical properties of thermally evaporated LiBO2-LiF composite films”, J. Appl. Phys.,78 [9] (1995)5675-5679.
    [12]A. Al-Kahlout, M.A. Aegerter, “Coloration mechanisms of sol–gel NiO–TiO2 layers studied by EQCM.”, Solar Energy Materials & Solar Cells 91 (2007) 213–223
    [13]. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky,“Electrochromism Fundamentals and Applications”, VCH Verlagsgesellschaft mbH, Chapter 2, 1995.
    [14]. T. Oi and K. Miyauchi, “Amorphous thin-film ionic conductors of MLIF.NALF3.” Mater. Res. Bull., 16(1981)1281.
    [15]. T. Oi, K. Miyauchi and K. Uehara, “Electrochromism of WO3 / LiAlF4/ Li in thin-film overlayers”, J. Appl. Phys., 53(1982)1823.
    [16]. G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R.Chapman and S. Schulz, “Prototype all-solid lithiated smart window devices”, Proc. SPIE, 823(1987)90.
    [17] P. Villars, L. D. Calvert ed., Pearson’s Handbook of Crystallographic Data for Intermetallic Phase, ASM international, New York, (1991) 4795
    [18]Numerical Data and Functional Relationships in Scirnce and Technology./v.22, Subvolume a. Intrinsic Properties of Group Ⅳ Elements and Ⅲ-Ⅴ,Ⅱ-Ⅵ and Ⅰ-Ⅶ Compounds., Berlin:/Springer-Verlag,/ 1987.
    [19]Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization .”J. Appl. Phys., 84 (1998) 3912
    [20]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, ” Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films.” Appl. Phys. Lett., 72 (1998) 3270
    [21]D. C. Reynolds, D. C. Lock and B. Jogai, “Optically pumped ultraviolet lasing from ZnO .” Solid State Commun., 99 (1996) 873
    [22]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S.Koyama, M. Y. Shen and T. Goto, “Optically pumped lasing of ZnO at room temperature.” Appl. Phys. Lett., 70 (1997) 2230
    [23]W. C. Hu, Z. G. Liu, R. X. Wu, Y. F. Chen, W. Ji, T. Yu and D. Feng, “Preparation of piezoelectric-coefficient modulated multilayer film ZnO/Al2O3 and its ultrahigh frequency resonance .” Appl. Phys. Lett., 71 (1997) 548
    [24]S. Ezhilvalavan and T.R N. Kutty, “High-frequency capacitance resonance of ZnO-based varistor ceramics .” Appl. Phys. Lett., 69 (1996) 3540
    [25]Shigemi Kohiki, Mikihiko Nishitani, and Takahiro Wada., “Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms.” J. Appl. Phys., 75 [4] 15 (1994) 2069-2072
    [26]R. Wang, Laura L. H. King and Arthur W. Sleight., “Highly conducting transparent thin films based on zinc oxide .” J. Mater Res. 11 [7] (1996)1659-1664
    [27]B. Sang, A. Yamada, M. Konagai., “Growth of boron-doped ZnO thin films by atomic layer depositi.” Solar Energy Material and Solar cell 49 (1997)19-26
    [28]Kwang Joo Kim and Young Ran Park, “Large and abrupt optical band gap variation in In-doped ZnO .” Appl. Phys. Lett., 78 (2001)475
    [29]M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura., “Properties of Ga-doped ZnO films .” J. Non-Crystal Solid 218 (1997) 323
    [30]X. W. Sun,J. X. Wang,” Fast Switching Electrochromic Display Using a Viologen-Modified ZnO Nanowire Array Electrode.” Nano letters , 8 [7] (2008)1884-1889
    [31]B. D. Yao, Y. F. Chan and N. Wanga, “Formation of ZnO nanostructures by a simple way of thermal evaporation.” Appl. Phys. Lett., 81 [4] (2002)757
    [32]S. Y. Li, C. Y. Lee and T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process.” J. Cryst. Growth 247 (2003) 357
    [33]B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition .” Appl. Phys. Lett., 83 [8] (2003) 1635
    [34]M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique.” Chem. Phys. Lett., 363 (2002) 123
    [35]Y. C. Wang, I. C. Leu and M. H. Hon, “Preparation of nanosized ZnO arrays by electrophoretic deposition .” Electrochem. Solid-state Lett., 5 [4] (2002)C53
    [36]H. Nagayama, H. Honda and H. Kawahara,” A New Process for Silica Coating.” J. Electrochem. Soc., 135 (1988) 2013
    [37]S. Deki, Y. Aoi, O. Hiroi and A. Kajinami, “Titanium(IV) oxide thin films prepared from aqueous solution .” Chem. Lett., 25 (1996) 433
    [38]S. Yamabi and H. Imai, “Fabrication of rutile TiO2 foils with high specific surface area via heterogeneous nucleation in aqueous solutions .” Chem. Lett., 30 (2001) 220
    [39]K. Tsukuma, T. Akiyama and H. Imai, “Liquid phase deposition film of tin oxide .” J. Non-Cryst. Solids., 210 (1997) 48
    [40]Q. Li, V. Kumar, Y. Li, Haitao Zhang, T. J. Marks and Robert P. H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions.” Chem. Mater., 17 (2005) 1001
    [41]L. Spanhel and M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids.” J. Am. Chem. Soc., 113 (1991) 2826
    [42]C. Pacholski, A. Kornowski and H. Weller, “Self-assembly of ZnO: From nanodots, to nanorods.” Angew. Chem. Int. Ed., 41 (2002) 1188
    [43]B. Liu and H. C. Zeng, “Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures .” Langmuir 20 (2004) 4196
    [44]X. M. Sun, X. Chen, Z. X. Deng and Y. D. Li, “A CTAB-assisted hydrothermal orientation growth of ZnO nanorods.” Mater. Chem. Phys., 78 (2003) 99
    [45]L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes .” Chem. Mater. 13 (2001) 4395
    [46]Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie and M. J. Mcdermott, “Biommetic arrays of oriented helical ZnO nanorods and columns .” J. Am. Chem. Soc., 124 (2002) 12954
    [47]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angew. “Low-temperature wafer-scale production of ZnO nanowire arrays” Chem. Int. Ed. 42 (2003) 3031
    [48]R. A. Laudise, A. A. Ballman,” Hydrothermal synthesis of zinc oxide and zinc sulfide.”, J. Phys. Chem., 64 [5] (1960)688
    [49]W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin,“Growth mechanism and growth habit of oxide crystal”, J. Cryst. Growth., 203 [1] (1999)186
    [50] R. B. Peterson, C. L. Firlds and B. A. Gregg, “Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions”, Langmuir, 20 (2004) 5114-5118
    [51]洪崇榮, 以射頻磁控濺鍍製備WO3-x / LiBO2 :LiF / NiOz 多層膜之全固態互補式電致色變元件性質研究, 義守大學材料工程學系, 碩士論文, (2008) 58
    [52]D. Adler and J. Feinleib, “Band Structure of Magnetic Semiconductors.” Phys.Rev. B2, (1970) 3112
    [53]Kwang-Soon Ahn, Yoon-Chae Nah, Jun-Ho Yum and Yung-Eun Sung, “The effect of Ar/O2 Ratio on Electrochromic Response Time of Ni Oxides Grown Using RF Sputtering System.” Jpn. J. Appl. Phys. 41 (2002) 212-215
    [54] P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, “Electrochromism Fundamentals and Applications”, VCH Verlagsgesellschaft mbH, Chapter 4. (1995),
    [55]陳為峰, 以化學法製備電致色變氧化鎳薄膜之研究, 逢甲大學化學工程學系, 博士論文, (2006) 44
    [56] C. M. Lampert, T. R. Omstead and P. C. Yu, “Chemical and optical properties of electrochromic nickel oxide films”, Solar Energy Materials, 14 (1986) 161-174.
    [57] P. C. Yu, G. Nazri and C. M. Lampert, “Spectroscopic and electrochemical studies of electrochromic hydrated nickel oxide films”, Solar Energy Materials, 16 (1987) 1-17.
    [58] H. Kamal, E. K. Elmaghraby, S. A. Ali and K. Abdel-Hady,“The electrochromic behavior of nickel oxide films sprayed at different preparative conditions”, Thin Solid Films, 483 (2005) 330-339.
    [59] S. Yueyan, Z. Zhiyang and Y. Xiaoji, “Electrochromic properties of NiOxHy thin films”, Solar Energy Materials and Solar Cells, 71 (2002) 51-59.
    [60] K. Nakaoka, J. Ueyama and K. Ogura, “Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films”, Journal of Electroanalytical Chemistry, 571 (2004) 93-99.
    [61] I. Porqueras and E. Bertran, “Electrochromic behaviour of nickel oxide thin films deposited by thermal evaporation”, Thin Solid Films, 398-399 (2001)41-44.
    [62] A. Agrawal, H. R. Habibi, R. K. Agrawal, J. P. Cronin, D. M. Roberts, R. Caron-Popowich and C. M. Lampert, “Effect of deposition pressure on the microstructure and electrochromic properties of electro- beam- evaporated nickel oxide films”, Thin solid Films, 221 (1992) 239-253.
    [63] L. D. Kadam and P. S. Patil, “Studies on electrochromic properties of nickel oxide thin films prepared by spray pyrolysis technique”, Solar Energy Materials and Solar Cells, 69 (2001) 361-369.
    [64] X. Chen, X. Hu and J. Feng, , “Nanostructured nickel oxide films and their electrochromic properties”, NanoStructured Materials, 6 (1995) 309-312.
    [65] M. Chigane and M. Ishikawa, , “Electrochromic properties of nickel oxide thin films prepared by electrolysis followed by chemical deposition”, Electrochimica Acta, 42 [10] (1997) 1515-1519.
    [66] I. Bouessay, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz and J.-M. Tarascon, “Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon”, Electrochimica Acta, 50 (2005) 3737-3745.
    [67] X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, H. Huang, “Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition .“Solar Energy Materials & Solar Cells 92 (2008) 628–633
    [68] H. Nagayama, H. Honda, H. Kawahara, “A New Process for Silica Coating .” J. Electrochem. Soc. 135 (1988) 2013.
    [69] P. Pramanik and S. Bhattacharya, “A Chemical Method for the Deposition of Nickel Oxide Thin Films.” J. Electrochem. Soc., 137 (1990) 3869.
    [70] A. J. Varkey and A. F. Fort, “Solution Growth Technique For Deposition of Nickel-Oxide Thin-Films.” Thin Solid Films, 235 (1993) 47.
    [71] S. Y. Han, D. H. Lee, Y. J. Chang, S. O. Ryu, T. J. Lee, and C. H. Changa, “The Growth Mechanism of Nickel Oxide Thin Films by Room-Temperature Chemical Bath Deposition”, J. Electrochem. Soc., (2006) 382-386
    [72] G. Hodes, “Chemical Solution Deposition of Semiconductor Films”, p. 96, Marcel Dekker (2002).
    [73]K. Nakaoka, J. Ueyama, and K. Ogura, “Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films.” J. Electroanal. Chem., 571 (2004)93
    [74] Xufeng Wu, Hua Bai, Chun Li, Gewu Lu and Gaoquan Shi,” Controlled one-step fabrication of highly oriented ZnO nanoneedle/nanorods arrays at near room temperature.”, CHEMICAL COMMUNICATIONS , (2006) 1655-1657
    [75] O. Lupan, L. Chow , G. Chai , H. Heinrich,” Fabrication and characterization of Zn–ZnO core–shell microspheres from nanorods.” Chemical Physics Letters 465 (2008) 249–253
    [76] 陳肯利, 低溫溶液中成長氧化鋅奈米棒之研究, 國立聯合大學碩士論文, 2008
    [77] M.-S. Wu, C.-H. Yang, M.-J. Wang, “Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques.” Electrochim. Acta 54, (2008) 155.
    [78]Mendoza-Galván , M.A. Vidales-Hurtado a, A.M. López-Beltrán,” Comparison of the optical and structural properties of nickel oxide-based thin films obtained by chemical bath and sputtering.” Thin Solid Films 517 (2009) 3115–3120
    [79]S.Y. Han, D.H. Lee, Y.J. Chang, S.O. Ryu, T.J. Lee, C.H. Chang,” The growth mechanism of nickel oxide thin films by room-temperature chemical bath deposition.” J. Electrochem. Soc. 153 (2006) 382.

    [80] K. Nakaoka, J. Ueyama, and K. Ogura, “Semiconductor and electrochromic properties of electrochemically deposited nickel oxide films.” J. Electroanal. Chem., 571 (2004)93
    [81] P. Bukovec, N. Bukovec, B. Orel, K.S. Wissiak,” Thermal-Analysis of Nickel-Oxide Films.” J. Therm. Anal. 40 (1993) 1193.
    [82]K.K. Purushothaman, G. Muralidharan,” The effect of annealing temperature on the electrochromic properties of nanostructured NiO films.” Solar Energy Materials & Solar Cells 93 (2009) 1195–1201
    [83] Ling Wang, Yan Zhao, Qiongyu Lai, Yanjing Hao,” Preparation of 3D rose-like NiO complex structure and its electrochemical property.” Journal of Alloys and Compounds 495 (2010) 82–87
    [84] P. Pmmonik and S. Bhattacharya,” A Chemical Method for the Deposition of Nickel Oxide Thin Films.” J. Electrochem. Soc., 137 [12] (1990)
    [85]U.M. Patil, R.R. Salunkhe, K.V. Gurav, C.D. Lokhande,” Chemically deposited nanocrystalline NiO thin films for supercapacitor application.” Applied Surface Science 255 (2008) 2603–2607
    [86] R. Cerc Korosˇec, P. Bukovec, B. Pihlar, J. Padezˇnik Gomilsˇek, “The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol-gel method. Part I.” Thermochim. Acta 402 (2003) 57.
    [87]周淑金, 葉信宏, 工業材料150期,民國88年6月
    [88]F. F. Ferreira, M. H. Tabacniks, M. C. A. Fantini, I. C. Faria, and A. Gorenstein, “Electrochromic nickel oxide thin films deposited under different sputtering conditions.” Solid State Ionics, 86-88 (1996) 971.
    [89] A.C. Sonavanea, A.I. Inamdara,b, P.S. Shindea, H.P. Deshmukhc, R.S. Patil , P.S. Patil,” Efficient electrochromic nickel oxide thin films by electrodeposition.” Journal of Alloys and Compounds 489 (2010) 667–673
    [90]S.I. Cordoba-Torressi, A. Hugot-Le Goff, S. Joiret, “Electrochromic Behavior of Nickel Oxide Electrodes.” J. Electrochem.Soc. 138 (1991) 1554.
    [91] M. Chigane, M. Ishikawa, “Enhanced Electrochromic Property of Nickel Hydroxide Thin Films Prepared by Anodic Deposition.” J. Electrochem. Soc. 141 (1994) 3439.
    [92] C. Natarajan, H. Matsumoto, G. Nogami, “Improvement in electrochromic stability of electrodeposited nickel hydroxide thin film .” J. Electrochem. Soc. 114 (1997) 121.
    [93] I.Bouessay, A. Rougier and J. M. Tarascon, “Electerochemically Inactive Nickel Oxide as Electrochromic Material.”, J. Electrochem, Soc.151[6] (2004) 145-152
    [94] I. Bouessay, A. Rougier, P. Poizot, J. Moscovici, A. Michalowicz, J.M. Tarascon, “Electrochromic degradation in nickel oxide thin film: A self-discharge and dissolution phenomenon.” Electrochim. Acta 50 (2005) 3737.
    [95] Y. Ushio, A. Ishikawa, T. Niwa, “Degradation of the electrochromic nickel oxide film upon redox cycling .” Thin Solid Films 280 (1996) 233.
    [96]M. Ristova, J. Velevska, M. Ristov,” Chemical bath deposition and electrochromic properties of NiOx films.” Solar Energy Materials & Solar Cells 71 (2002) 219–230
    [97]T. Maruyama, S. Arai, “The Electrochromic Properties of Nickel-Oxide Thin-Films Prepared by Chemical-Vapor-Deposition.” Sol. Energy Mater. Sol. Cells 30 (1993) 257.
    [98]M.A. Vidales-Hurtado, A. Mendoza-Galván,” Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition” Solid State Ionics 179 (2008) 2065–2068
    [99]吳姿蓉,電子束蒸鍍製備氧化鎳薄膜之電致變色性質研究, 成功大學材料科學與工程學系, 碩士論文, (2008)83-84

    無法下載圖示 校內:2015-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE