簡易檢索 / 詳目顯示

研究生: 吳靜昀
Wu, Ching-Yun
論文名稱: 雙十六碳鏈離子對雙親分子/添加劑形成之液胞及Langmuir單分子層的特性分析
Characterization of Vesicle and Langmuir Monolayer Composed of Dihexadecyl-Chained Ion Pair Amphiphile with Additives
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 161
中文關鍵詞: 陰陽離子液胞雙鏈陽離子型界面活性劑離子對雙親分子液胞雙層膜
外文關鍵詞: catanionic vesicle, double-chained cationic sufactant, ion pair amphiphile, vesicular bilayer
相關次數: 點閱:117下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究以十六烷基三甲基溴化銨(hexadecyltrimethylammonium bromide, HTMAB, CH3(CH2)15N(CH3)3Br)及十六烷基硫酸鈉(sodium hexadecylsulfate, SHS, CH3(CH2)15SO4Na )所形成之離子對雙親分子(ion pair amphilphile, IPA)HTMA-HS,藉由強制性程序形成陰陽離子液胞(catanionic vesicle),並探討添加不同莫耳分率的雙碳氫鏈二甲基溴化銨(dialkyldimethylammonium bromide, DXDAB)及膽固醇對液胞物理穩定性的影響。
    實驗結果顯示,與純HTMA-HS系統相比,HTMA-HS/DXDAB所製備出之陰陽離子液胞的物理穩定性明顯較佳,表示DXDAB的添加對陰陽離子液胞的物理穩定性有大幅改善的效果。由於當DXDAB的莫耳分率增加時,液胞之界面電位不會呈現與含量成正比的提升效果,因此液胞雙層膜內分子碳氫鏈的排列特性可能是決定液胞物理穩定性的主導因素。
    此外,藉由Langmuir單分子層的實驗探討分子碳氫鏈間的交互作用。對HTMA-HS/DXDAB系統而言,分子間作用較弱的單分子層,在液胞雙層膜中也表現出規則性較差的分子排列。反之,分子間作用較強的單分子層,在液胞雙層膜中也表現出規則性較高的分子排列。
    在添加膽固醇的HTMA-HS/DXDAB液胞系統中,隨著膽固醇莫耳分率的增加,液胞粒徑隨時間增大的趨勢變得較不明顯,且液胞的界面電位獲得提升,表示膽固醇的添加能同時增強分子碳氫鏈間凡得瓦作用及提高液胞表面帶電特性,而能大幅改善陰陽離子液胞的物理穩定性。然而,單分子層的實驗顯示由於膽固醇的環狀結構所形成的立體障礙,增加了分子碳氫鏈尾端的自由度,使得膽固醇的添加只能增強靠近固醇環之分子部分的交互作用,而無法提升雙層膜中整體分子碳氫鏈排列的規則性。
    整體而言,DXDAB及膽固醇的添加能大幅改善由HTMA-HS製備出之陰陽離子液胞的物理穩定性。而HTMA-HS所製備出之液胞的物理穩定性,明顯優於其他較短碳鏈之IPA所形成液胞的物理穩定性,此結果應與IPA的碳氫鏈長度有關。由於HTMA-HS的雙十六碳氫鏈可提供分子間較強的疏水作用,有助於抑制液胞間的融合,而能提升液胞的物理穩定性。

    Abstract
    In this study, the ion pair amphiphile (IPA), hexadecyltrimethylammonium-hexadecylsulfate (HTMA-HS), was prepared from the cationic surfactant, hexadecyltrimethylammonium bromide (HTMAB), with the anionic surfactant, sodium hexadecylsulfate (SHS). HTMA-HS was then used to form catanionic vesicles by a forced formation process, and the effects of added various molar fractions of dialkyldimethylammonium bromide (DXDAB) and cholesterol on the physical stability of the vesicles were investigated.
    The experimental results indicated that, in comparison with the pure HTMA-HS system, the vesicles prepared from HTMA-HS/DXDAB apparently have better physical stability. This implied that the addition of DXDAB could significantly improve the physical stability of the catanionic vesicles. Because the zeta potential of the vesicles was not proportionally increased with the increased molar fraction of DXDAB, the packing characteristic of the molecule hydrocarbon chains in the vesicular bilayers might be the dominant factor for determining the vesicle physical stability.
    In addition, the interactions between molecule hydrocarbon chains were explored by the Langmuir monolayer experiments. For the HTMA-HS/DXDAB systems, when the monolayers possessed weaker molecular interactions, less conformational order of the molecules in the vesicular bilayers was also found. On the contrary, when stronger molecular interactions were found within the monolayers, higher conformational order of the molecules in the vesicular bilayers was detected.
    For the HTMA-HS/DXDAB vesicle systems with the incorporation of cholesterol, with the increased molar fraction of cholesterol, the increase of the vesicle size with time became less significant, and the zeta potential of the vesicles became higher. The results suggested that the addition of cholesterol could increase the van der Waals interactions between the molecule hydrocarbon chains and enhance the charge characteristic of the vesicular surface, resulting in improved physical stability of the catanionic vesicles. However, the monolayer experiments demonstrated that, due to the steric hindrance induced by the sterol rings of cholesterol, the freedom of the terminal segments of the molecule hydrocarbon chains was increased. Thus, the addition of cholesterol can only enhance the interactions between the molecular parts near the sterol rings and can not improve the overall packing order of the molecule hydrocarbon chains in the vesicular bilayers.
    In summary, the addition of DXDAB and cholesterol can significantly improve the physical stability of the catanionic vesicles prepared from HTMA-HS. The vesicles prepared from HTMA-HS apparently have better physical stability than vesicles formed of other IPAs with shorter hydrocarbon chains. This result was related to the hydrocarbon chain length of IPA. Because the dihexadecyl-chain of HTMA-HS could provide enhanced hydrophobic interactions between the molecules, the vesicle fusion could be inhibited, resulting in improved vesicle physical stability.

    總目錄 摘要 I Abstract III 誌謝 VI 總目錄 VII 表目錄 X 圖目錄 XII 符號說明 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 文獻回顧 4 1-3-1 離子對雙親分子 4 1-3-2 陰陽離子液胞 6 1-3-3 帶電液胞 7 1-3-4 膽固醇效應 10 1-3-5 碳氫鏈對稱性和鏈長的效應 13 1-3-6 液胞雙層膜中分子碳氫鏈的排列 15 第二章 實驗 23 2-1 藥品 23 2-2 實驗儀器及裝置 23 2-2-1 超音波震盪分散裝置 23 2-2-2 雷射光散射法粒徑及界面電位分析儀 24 2-2-3 元素分析儀 26 2-2-4 傅利葉轉換紅外光譜儀 27 2-2-5 Langmuir槽 28 2-2-6 穿透式電子顯微鏡 29 2-3 實驗方法 30 2-3-1 HTMA-HS 的製備 30 2-3-2 液胞分散液的製備 30 2-3-3 液胞粒徑分布及界面電位的量測 31 2-3-4 單分子層實驗的藥品配製 32 2-3-5 單分子層等溫線的測量 32 第三章 結果與討論 42 3-1 HTMA-HS之液胞分散液 42 3-1-1 HTMA-HS之陰陽離子液胞的物化特性 42 3-1-2 HTMA-HS之單分子層行為 42 3-2 HTMA-HS/DXDAB之液胞分散液 43 3-2-1 HTMA-HS/DXDAB之陰陽離子液胞的物化特性 43 3-2-2 液胞雙層膜結構中分子碳氫鏈的排列特性 48 3-2-3 HTMA-HS/DXDAB之混合單分子層行為 50 3-2-4 IPA/DXDAB液胞之物理穩定性 53 3-2-5 HTMA-HS/DXDAB液胞之TEM影像 55 3-3 DXDAB/膽固醇之液胞分散液 55 3-3-1 DXDAB/膽固醇之陰陽離子液胞的物化特性 55 3-3-2 液胞雙層膜結構中分子碳氫鏈的排列特性 61 3-3-3 DXDAB/膽固醇之混合單分子層行為 63 3-3-4 膽固醇效應 65 3-3-5 DXDAB/膽固醇液胞之TEM影像 67 3-4 HTMA-HS/DXDAB/膽固醇之液胞分散液 67 3-4-1 HTMA-HS/DXDAB/膽固醇之陰陽離子液胞的物化特性 67 3-4-2 液胞雙層膜結構中分子碳氫鏈的排列特性 70 3-4-3 HTMA-HS/DXDAB/膽固醇之混合單分子層行為 71 3-4-4 IPAs/DXDAB/膽固醇液胞之物理穩定性 74 3-4-5 HTMA-HS/DXDAB/膽固醇液胞之TEM影像 77 第四章 結論 143 參考文獻 145 自述 161

    參考文獻
    Andersson, M., Hammarstrom, L., and Edwards, K., “Effect of bilayer phase transitions on vesicle structure and its influence on the kinetics of viologen reduction,” Journal of Physical Chemistry 99, 14531-14538, 1995.
    Apel-Paz, M., Doncel, G. F., and Vanderlick, T. K., “Impact of membrane cholesterol content on the resistance of vesicles to surfactant attack,” Langmuir 21, 9843-9849, 2005.
    Bach, D., and Wachtel, E., “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochimica et Biophysica Acta 1610, 187-197, 2003.
    Bhattacharya, S., De, S., and Subramanian, M., “Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design,” Journal of Organic Chemistry 63, 7640-7651, 1998.
    Bhattacharya, S., and Haldar, J., “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage,” Biochimica et Biophysica Acta 1467, 39-53, 2000.
    Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J., and Engberts, J.B. F. N., “Vesicle-cholesterol interactions: effect of added cholesterol on gel-to-liquid crystal transitions in a phopholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics 5, 5309-5312, 2003.
    Blanzat, M., Perez, E., Rico-Latters, R., Prome, D., Prome, J. C. and Lattes,A., “New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and gemini catanionic analogues of galactosylceramide(galβ1cer),” Langmuir 15, 6163-6169, 1999.
    Borochov, N., Wachtel, E. J., and Bach, D., “Phase behavior of mixtures of cholesterol and saturated phosphatidylglycerols,” Chemistry and Physics of Lipids 76, 85-92, 1995.
    Brasher, L. L., Herrington, K. L., and Kaler, E. W., “Electrostatic effects onthe phase behavior of aqueous cetyltrimethylammonium bromide andsodium octyl sulfate mixtures with added sodium bromide,” Langmuir 11, 4267-4277, 1995.
    Campbell, R. B., Balasubramanian, S. V., and Straubinger, R. M., “Phospholipid-cationic lipid interactions: influences on membrane and vesicle properties,” Biochimica et Biophysica Acta 1512, 27-39, 2001.
    Carmona-Ribeiro, A. M., and Midmore, B. R., “Surface potential in charged synthetic amphiphile vesicles,” Journal of Physical Chemistry 96, 3542-3547, 1992.
    Carmona-Ribeiro, A. M., Ortis, F., Schumacher, R. I., and Armelin, M. C. S., “Interactions between cationic vesicles and cultured mammalian cells.” Langmuir 13, 2215-2218, 1997
    Carrion, F. J., Maza, A. D., and Parra, J. L., “The influence of ionic strength and lipid bilayer charge on the stability of liposomes,” Journal of Colloid and Interface Science 164, 78-87, 1994.
    Chen, C., and Tripp, C. P., “An infrared spectroscopic based method to measure membrane permeance in liposomes,” Biochimica et Biophysica Acta 1778, 2266-2272, 2008.
    Chien, C.-L., Yeh, S.-J., Yang, Y.-M., Chang, C.-H., and Maa, J.-R., “Formation and encapsulation of catanionic vesicles,” Journal of the Chinese Colloid and Interface Society 24, 31-45, 2002.
    Chiruvolu, S., Israelachvili, J. N., Naranjo, E., Xu, Z., and Zasadzinski, J. A., “Measurement of forces between spontaneous vesicle-forming bilayers,” Langmuir 11, 4256-4266, 1995.
    Choosakoonkriang, S., Wieyhoff, C. M., Anchordoquy, T. J., Koe, G. S., Smith, J. G., and Middaugh, R. C., “Infrared spectroscopic characterization of the interaction of cationic lipids with plasmid DNA,” The Journal of Biological Chemistry 276, 8037-8043, 2001.
    Choucair, A., Lavigueur, C., and Eisenberg, A., “Polystyrene-b-poly(acrylic acid) vesicle size control using solution properties and hydrophilic block length” Langmuir 20, 3894-3900, 2004.
    Chung, M. H., and Chung, Y. C., “Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Colloids and Surfaces B: Biointerfaces 24, 111-121, 2002.
    Chung, M. H., Park, M. J., Chun, B. C., and Chung, Y. C., “Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Colloids and Surfaces B: Biointerfaces 28, 83-93, 2003.
    Chung, M. H., Park, C., Chun, B. C., and Chung, Y. C., “Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property,” Colloids and Surfaces B: Biointerfaces 34, 179-184, 2004.
    Cuccovia, I. M., Feitosa, E., Chaimovich, H., Sepulveda, L., and Reed, W., “Size, electrophoretic mobility, and ion dissociation of vesicles prepared with synthetic amphiphiles,” Journal of Physical Chemistry 94, 3722-3725, 1990.
    Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H., and Scheule R. K., “Biophysical characterization of cationic lipid:DNA complexes,” Biochimica et Biophysica Acta 1325, 41-62, 1997.
    Feitosa, E., and Brown, W., “Fragment and vesicles structures in sonicated dispersions of dioctadecyldimethylammonium bromide,” Langmuir 13, 4810-4816, 1997.
    Feitosa, E., and Jansson, J., and Lindman, B., “The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles,” Chemistry and Physics of Lipids 142, 128-132, 2006.
    Filion, M. C., and Phillips, N. C., “Major limitations in the use of cationic liposomes for DNA delivery,” International Journal of Pharmaceutics 162, 159-170, 1998.
    Fischer, A., Hebrant, M., and Tondre, C., “Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system,” Journal of Colloid and Interface Science 248, 163-168, 2002.
    Fournier, I., Barwicz, J., Auger, M., and Tancrede, P., “The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by amphoteric in B: a FTIR study,” Chemistry and Physics of Lipids 151, 41-50, 2008.
    Fukuda, H., Kawata, K., and Okuda, H., “Bilayer-forming ion-pair amphiphiles from single-chain surfactants,” Journal of the American Chemical Society 112, 1635-1637, 1990.
    Fuller, G. M., and Shields, D., “Molecular basis of medical cell biology,” Stamford Connecticut, 1998.
    Guillaume, B. C. R., Yogev, D., and Fendler, J. H., “Twisted intramolecular charge-transfer emissions of fluorescence probes in didodecyldimethylammonium bromide, dioctadecyldimethylammonium bromide, and didodecyl phosphate vesicles undergoing fusion,” Journal of Physical Chemistry 95, 7489-7494, 1991.
    Gustafsson, J., Arvidson, G., Karlsson, G., and Almgren, M., “Complexes between cationic liposomes and DNA visualized by cyro-TEM,” Biochimica et Biophysica Acta 1235, 305-312, 1995.
    Haas, S., Hoffmann, H., Thunig, C., and Hoinkis, E., “Phase and aggregation behaviour of double-chain cationic surfactants from the class of N-alkyl-N-alkyl’-N, N-dimethylammonium bromide surfactants,” Colloid and Polymer Science 277, 856-867, 1999.
    Hac-Wydro, K., Wydro, P., and Dynarowicz-Latka, P., “Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols - a monolayer study,” Journal of Colloid and Interface Science 286, 504-510, 2005.
    Hirano K., and Fukuda, H., “Polymerizable ion-paired amphiphiles,” Langmuir 7, 1045-1047, 1991.
    Holmberg, K., Handbook of applied surface and colloid chemistry, John Wiley and Sons, England, 2, 45-54, 2002.
    Huang, J.B. and Zhao, G.X., “Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant,” Colloid and Polymer Science 273, 156-164, 1995.
    Huebner, S., Battersby, B.J., Grimm, R., and Cevc, G. “Lipid-DNA complex formation: reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron Microscopy,” Biophysical Journal l76, 3158-3166, 1999.
    Israelachvili, J. N., Mitchell, D. J., and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society-Faraday Transactions 72, 1525, 1976.
    Jayme, M.L., Dunstan, D.E., and Gee, M.L., “Zeta potentials of gum arabic stabilised oil in water emulsions” Food Hydrocolloids 13, 459–465, 1999.
    Jubeh, T. T., Barenholz, Y., and Rubinstein, A., “Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes,” Pharmaceutical Research 21, 447-453, 2004.
    Kajiyama, T., Oishi, Y., Uchida, M., and Takashima, Y., “Novel concept for the aggregation structure of monolayers on the water surface” Langmuir 9, 1978-1979, 1993.
    Kaler, E. W., Murthy, A. K., Rodriguez, B. E., and Zasadzinski, A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailedsurfactants,” Science 245, 1371-1374, 1989.
    Kodati, V. R., and Lafleur, M., “Comparison between orientational and conformational orders in fluid lipid bilayers,” Biophysical Journal 64, 163-170, 1993.
    Kwon, K. O., Kim, M. J., Abe, M., Ishinomori, T., and Ogino, K., “Thermotropic behavior of a phospholipids bilayer interacting with metal ions,” Langmuir 10, 1415-1420, 1994.
    Lasic, D. D.,“Liposomes: from physics to applications,” Elsevier, New York, 265-318, 1993.
    Lasic, D. D., and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Solid State and Materials Science 1, 392-400, 1996.
    Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 67-112, 1997.
    Lewis, R. N. A. H., and McElhaney, R. N., “The structure and organization of phospholipid bilayers as revealed by infrared spectroscopy,” Chemistry and Physics of Lipids 96, 9-21, 1998.
    Liang, C. H., and Chou, T. H., “Membrane properties and cyototoxicity of cationic surfactants/phosphatidylcholine mixed systems,” The 2006 Japan/Taiwan/Korea Chemical Engineering Conference, 140-141, PF-11, Taiwan, 2006.
    Lopez-Garcia, F., Villalain, J., and Gomez-Fernandez, J. C., “Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium. A study using DSC, FT-IR and Ca2+-binding,” Biochimica et Biophysica Acta 1236, 279-288, 1995.
    Manosroi, A., Wongtrakul, P., Manosroi, J., Sakai, H., Sugawara, F., Yuasa, M., and Abe, M., “Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol,” Colloids and Surfaces B: Biointerfaces 30, 129-138, 2003.
    Marques, E. F., Regev, O., Khan, A., and Lindman, B., “Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science 100, 83-104, 2003.
    Matsumura, H., and Dimitrova, M., “A comparative study of the sorption of serum albumin, lysozyme, and cytochrome C at phospholipids membranes using surface tensiometry, electrophoresis, and leakage of probe molecules,” Colloids and Surfaces B: Biointerfaces 6, 165-172, 1996.
    McMullen, T. P. W., Lewis, N. A. H., and McElhaney, R. N., “Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines,” Biochemistry 32, 516-522, 1993.
    McMullen, T. P. W., Lewis, R. N. A. H., and McElhaney, R. N., “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,” Biophysical Journal 79, 2056-2065, 2000.
    Mel’nikova, Y. S., Mel’nikov, S. M., and Löfroth, J. E., “Physico-chemical aspects of the interaction between DNA and oppositely charged mixed liposomes,” Biophysical Chemistry 81, 125-141, 1999.
    Menger, F. M., Binder, W. H., and Keiper, J. S., “Cationic surfactants with counterions of glucuronate glycosides,” Langmuir 13, 3247-3250, 1997.
    Needham, D., and Dewhirst, M.W., “The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors” Advanced Drug Devlivery Review 53, 285-305, 2001.
    New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
    Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K., and Moulik, S. P., “Physico-chemical studies on mixed oppositely charged surfactants: their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 264, 106-113, 2005.
    Regev, O., and Khan, A., “Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems,” Journal of Colloid and Interface Science 182, 95-109, 1996 .
    Reis, O., Winter, R., and Zerda, T. W., “The effect of high external pressure on DPPC-cholesterol multilamellar vesicles: a pressure-tuning Fourier transform infrared spectroscopy study,” Biochimica et Biophysica Acta 1279, 5-16, 1996.
    Ròg, T. and Pasenkiewicz-Gierula, M., “Cholesterol effects on the phospholipid condensation and packing in the bilayer: a molecular simulation study,” FEBS Letters 502, 68-71, 2001.
    Segota, S. and Tezak, D. “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science 121, 51-75, 2006.
    Silva, C., Aranda, F. J., Ortiz, A., Martinez, V., Carvajal, M., and Teruel, J. A. “Molecular aspects of the interaction between plants sterols and DPPC bilayers an experimental and theoretical approach,” Journal of Colloid and Interface Science 358, 192-201, 2011.
    Smiley, B. L., and Richmond, G. L., “Alkyl chain ordering of asymmetric phosphatidylcholines adsorbed at a liquid-liquid interface,” Journal of Physical Chemistry B 103, 653-659, 1999.
    Song, Y. K., and Liu, D., “Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration,” Biochimica et Biophysica Acta 1372, 141-150, 1998.
    Sternberg, B., Sorgi, F.K., and Huang, L., “New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy,” FEBS Letters 356, 361-366, 1994.
    Teixeira, C. V., Blanzat, M., Koetz, J., Rico-Lattes, I., and Brezesinski, G., “In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids,” Biochimica et Biophysica Acta 1758, 1797-1808, 2006.
    Tomasic, V., Stefanic, I., and Filipovic-Vincekovic, N., “Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures,” Colloid and Polymer Science 277, 153-163, 1999.
    Tondre, C., and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science 93, 115-134, 2001.
    Vautrin, C., Zemb, T., Schneider, M., and Tanaka, M., “Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles,” Journal of Physical Chemistry B 108, 7986-7991, 2004.
    Virden, J. W., and Berg, J. C., “NaCl-induced aggregation of dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol,” Langmuir 8, 1532-1537, 1992.
    Walker S. A., and Zasadzinski, A. J., “Electrostatic control of spontaneous vesicle aggregation,” Langmuir 13, 5076-5081, 1997.
    Wang, C.Z., Tang, S.H., Huang, J.B., Zhang, X.R. and Fu, H.L., “Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems,” Colloid Polymer Sci. 280, 770-774, 2002.
    Yang, Y.M., Wu, K.C, Huang, Z.L., and Chang, C.H., “On the stability of liposomes and catansomes in aqueous alcohol solutions,” Langmuir 24, 1695-1700, 2008.
    Yatcilla, M.T., Herrington, K.L., Brasher, L.L., Kaler, E.W., Chiruvolu, S., and Zasadzinski, JA., “Phase behavior of aqueous mixtures of cetyltrimethylammonium bromide (CTAB) and sodium octyl sulfate (SOS), ” Journal of Physical Chemistry 100, 5874-5879, 1996.
    Yokouchi, Y., Tsunoda, T., Imura, T., Yamauchi, H., Yokoyama, S., Sakai, H., and Abe, M., “Effect of adsorption of bovine serum albumin on liposomal membrane characteristics,” Colloids and Surfaces B: Biointerfaces 20, 95-103, 2001.
    Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H., and Abe, M., “Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoyldimethylammonium bromide,” Colloids and Surfaces B: Biointerfaces 44, 204-210, 2005.
    Zhang, X.R., Huang, J.B., Mao, M., Tang, S.H. and Zhu, B.Y., “From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents,”Colloid Polymer Sci. 279, 1245-1249, 2001.
    Zuidam, N. J., and Barenholz, Y., “Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin,” Biochimica et Biophysica Acta 1329, 211-222, 1997.
    李雅鈺,“含膽固醇之陰陽離子液胞穩定性及包覆行為的研究,”國立成功大學化學工程學系碩士論文,2004。
    李威漢,“陰陽離子界面活性劑的製備及其相轉移行為的熱卡分析,”國立成功大學化學工程學系碩士論文,2010。
    呂奇達,“帶正電的陰陽離子液胞與DNA之結合行為的探討,”國立成功大學化學工程學系碩士論文,2005。
    吳國彰,“陰陽離子液胞穩定性及包覆/釋放行為的研究,”國立成功大學化學工程學系碩士論文,2006。
    吳芷容,“利用帶正電的陰陽離子液胞做為DNA載體之可行性的研究,”國立成功大學化學工程學系碩士論文,2008。
    杜承霖,“白蛋白對含雙鏈陽離子型界面活性劑之陰陽離子液胞物化特性的影響,”國立成功大學化學工程學系碩士論文,2012。
    林奕萍,“高轉染能力之新穎性奈米微粒設計,”國立台灣大學醫學院生物化學暨分子生物研究所,2003。
    林冠豪,“帶電的陰陽離子液胞之製備及物理穩定性研究,”國立成功大學化學工程學系碩士論文,2004。
    徐立銘,“陰陽離子液胞包覆行為之探討,”國立成功大學化學工程學系碩士論文,2002。
    陳柏瑋,“白蛋白存在下帶正電陰陽離子液胞穩定性的探討,”國立成功大學化學工程學系碩士論文,2007。
    陳泓宇,“以紅外光譜技術探討牛血漿白蛋白對氣/液界面上混合脂質單分子層行為的影響,”國立成功大學化學工程學系碩士論文,2009。
    張維芬,“添加劑對雙十六碳鏈離子對雙親分子形成之陰陽離子液胞物化特性的影響,”國立成功大學化學工程學系碩士論文,2012。
    黃鉦琳,“帶電陰陽離子液胞的形成及其膠化之研究,”國立成功大學化學工程學系碩士論文,2007。
    游文月,“共溶劑促進陰陽離子液胞自發性形成之研究,”國立成功大學化學工程學系碩士論文,2004。
    葉紹任,“共溶劑對陰陽離子液胞穩定性的影響,”國立成功大學化學工程學系碩士論文,2003。
    廖怡芬,“長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響,”國立成功大學化學工程學系碩士論文,2006。
    簡振龍,“陰/陽離子界面活性劑的混合增效作用之研究,”國立成功大學化學工程學系碩士論文,2000。

    下載圖示 校內:2015-08-02公開
    校外:2015-08-02公開
    QR CODE