簡易檢索 / 詳目顯示

研究生: 謝秉錡
Hsieh, Ping-Chi
論文名稱: 大尺寸釤鋇銅氧單晶粒超導塊材之製程及釘札性能研究
Study of the Processing and Flux Pinning Properties of Melt Grown Large Single Grain SmBaCuO
指導教授: 陳引幹
Chen, In-gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 133
中文關鍵詞: 高溫超導
外文關鍵詞: high-temperature superconductor
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • RE-Ba-Cu-O(RE=Sm,Nd..)高溫超導體因其特殊的peak effect效應,隨著外加磁場增加、呈現出較YBCO材料較佳的臨界電流密度(Jc)性質,對於許多高磁場下的應用有著極大的發展潛力。
    由於超導塊材所能擄獲的磁場強度正比於其Jc性質與單晶粒的尺寸大小。為了提升其應用可能性,主要的研究莫不致力於如何提升其高磁場下的磁通釘扎能力(Flux pinning strength)以及成長更大尺寸的單晶粒超導塊材。
    本研究對象Sm-Ba-Cu-O,分別選擇以MgO單晶基板與Nd1Ba2Cu3Oy薄膜為晶種材料,於空氣下進行冷接種熔融製程,經由適當的製程溫度曲線控制,以成長Sm-Ba-Cu-O單晶粒超導塊材。另一方面,本實驗利用溶膠凝膠法,以聚丙烯酸PAA為高分子前驅物合成出Sm2BaCuO5及Nd4Ba2Cu2O10相之奈米粉體,經由添加此類粉體、使SmBCO微結構中引入奈米級釘扎中心以期對Jc性質有正面的助益,並討論可能的釘扎作用機制。
    實驗中,以單晶MgO為晶種及連續降溫成長方式,可於空氣下成長出直徑2.5cm左右的單晶粒SmBCO超導塊材。
    在Jc的提升與釘扎性能的結果方面,相較於未添加之參考樣品,Sm211奈米粉體的添加,使SmBCO在相對高磁場下呈現出明顯的peak effect;而Nd422奈米粉體的效果,不論在低磁場或高磁場的量測範圍,各添加量樣品Jc均獲得大幅度地提升,Tc,onset結果均在94-95K且∆Tc~1K左右。其中添加量0.1wt%樣品,Jc(77K,0T) ~1.47×104A/cm2,由於peak effect,Jc(77K,1.6T)=1.2×104A/cm2;而此時參考樣品Jc已急遽下降而幾乎沒有超導性。fp-h curve顯示Nd422及Sm211奈米添加物樣品屬於∆κ pinning之釘扎中心型態;而參考樣品的主要釘扎機制為normal point pinning。

    REBCO high temperature superconductors has significant potential for high field engineering applications due to its inherent peak effect which exhibits high Jc values at high magnetic field.
    The magnitude of trapped field within bulk superconductors is proportional to the critical current density and the size of single grain. So it is necessary to improve the flux pinning ability and produce larger sized single grain REBCO, which are both key issues to practical applications.
    In this study, bulk SmBCO were melt-processed in air using cold seeding technique with MgO single crystal and Nd123 thin film as seed material. Nano-sized Sm2BaCuO5 (“Sm211”) and Nd4Ba2Cu2O (“Nd422”) non-superconducting particles were prepared by sol-gel process of mixing poly-acrylic acid (PAA) with metal ion solutions. Small amounts of Sm211 and Nd422 nanoparticles were mixed with precursor powders in order to induce nano-pinning center within melt-textured SmBCO.
    Experimental results show that Jc of SmBCO was enhanced by the addition of nanoSm211 or nanoNd422 particles, especially at high magnetic fields. Onset Tc of nano-Nd422 added samples were 94-95K with transition width~1K. 0.1wt% nano-Nd422 added sample shows the best Jc performance with Jc(77K,0T) ~1.47×104A/cm2 and Jc(77K,1.6T)=1.2×104A/cm2.
    The scaling results reveal that the major pinning mechanism for SmBCO with nanoSm211/Nd422 additives is ∆κ pinning and normal point pinning mechanism for the reference sample.

    摘 要………………………………………………………………..Ⅰ 目 錄………………………………………………………………..Ⅲ 圖 目 錄………………………………………………………………..Ⅶ 表 目 錄……………………………………………………………..ⅩⅡ 第一章 緒 論…………………………………………………………..1 1-1 前 言…………………………………………………………..1 1-2 銅氧化物超導塊材的研究與應用……………………………..2 1-3 研究目的………………………………………………………..3 第二章 理論基礎與文獻回顧…………………………………………..4 2-1超導體的發展歷程與基礎理論…………………………………..4 2-1.1 超導體的發展歷程…………………………………………...4 2-1.2超導體特性……………………………………………………6 2-1.3 BCS理論………………………………………………………7 2-1.4超導體的分類…………………………………………………9 2-2 RE-Ba-Cu-O高溫超導材料晶體成長………………………...12 2-2.1熔融織構製程………………………………………………..12 2-2.2包晶凝固成長(Peritectic solidification)…………………….14 2-2.3 123晶體成長模式…………………………………………...15 2-3 RE-Ba-Cu-O高溫超導體(RE=rare earth element)………………16 2-3.1晶體結構……………………………………………………..16 2-3.2 RE-Ba-Cu-O系統相圖………………………………………17 2-4 單晶粒Sm-Ba-Cu-O熔融製程影響因素………………………19 2-4.1 頂端接種技術:晶種的影響………………………………..19 2-4.2 低包晶溫度披覆層技術…………………………………….21 2-4.3 製程溫度曲線的影響……………………………………….22 2-5 臨界電流密度的提升…………………………………………...25 2-5.1 臨界電流密度(critical current density)定義……………….25 2-5.2 渦旋線的釘扎(pinning of vortex)………………………….25 2-5.3 非超導RE211相的釘扎性能……………………………...26 2-6 Scaling law與釘扎機制探討…………………………………….28 2-6.1 釘扎力量(Pinning force)定義……………………………...29 2-6.2 釘扎中心(Pinning center)分類……………………………..30 2-6.3 Pinning functions……………………………………………31 第三章 實驗方法及步驟………………………………………………54 3-1實驗材料………………………………………………………….54 3-2實驗流程………………………………………………………….55 3-2.1 奈米前驅物(RE2BaCuO5[RE:Sm, Nd])之製備…………..55 3-3.2頂端接種熔融製程(TSMG, Top-seeded melt-textured growth)……………………………………………………………..58 3-3 性質分析………………………………………………………...60 3-3.1粉末之熱性質分析…………………………………………..60 3-3.2相成分之鑑定………………………………………………..60 3-3.3微結構觀察…………………………………………………..60 3-3.4超導性能的量測……………………………………………..61 3-4儀器設備………………………………………………………….61 第四章 結果與討論……………………………………………………67 4-1前驅粉末合成…………………………………………………….67 4-1.1 Sm123、Sm211及Sm210粉末XRD繞射結果……………67 4-1.2 溶膠凝膠法製備Sm211/Nd422奈米粉體………………….67 (1)熱差分析(DTA)結果……………………………………………67 (2)XRD結晶相鑑定……………………………………………….68 (3)粒徑分析………………………………………………………...69 4-2 SmBCO單晶粒成長結果………………………………………..79 4-3超導性能量測…………………………………………………….85 4-3.1 Sm211奈米添加物對SmBCO超導性能的影響…………..86 4-3.2添加奈米Sm211的顯微結構觀察………………………….89 (1) SEM (Scanning Electron Microscope)…………………………89 (2) TEM (Transmission Electron Microscope)…………………….90 4-3.3 Nd422奈米添加物對SmBCO超導性能的影響………….103 4-3.4添加奈米Nd422的顯微結構觀察…………………………105 (1) SEM/EPMA (Electron Probe Micro-Analyzer)……………….105 4-4 Scaling law與釘扎機制探討…………………………………...107 奈米添加物Nd422/Sm211樣品之釘扎機制…………………….107 4-5綜合討論………………………………………………………...109 第五章 結 論…………………………………………………………125 Sm211/Nd422奈米粉體合成…………………………………..125 SmBCO單晶粒成長結果………………………………………125 奈米添加物Sm211/Nd422對SmBCO超導性能的影響……..126 Scaling law與釘扎機制探討…………………………………...126 參 考 文 獻…………………………………………………………..128

    1. M. Tomita, M. Murakami, High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K. Nature Vol.42, Jan 30 (2003) 517-520.
    2. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, Superconductivity at 93 K ina New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Phys. Rev. Lett. 58 (1987) 908.
    3. Schön, J. H., Kloc, Ch. & Batlogg, B. Superconductivity at 52 K in hole-doped C60. Nature 408, (2000) 549-552.
    4. J.H. Schon, Ch. Kloc, B. Batlogg, High-Temperature Superconductivity in Lattice-Expanded C60. Science, Vol 293, Issue5539 (2001) 2432-2434.
    5. Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani and Jun Akimitsu, Superconductivity at 39K in magnesium diboride. Nature 410, (2001) 63-64.
    6. Katsuya Shimizu, Hiroto Ishikawa, Daigoroh Takao, Takehiro Yagi and kiichi Amaya. Superconductivity in compressed lithium at 20 K. Nature 419, (2002) 597 - 599.
    7. M. Cyrot and D. Pavuna, Introduction to Superconductivity and High-Tc Materials, World Scientific, (1992).
    8. Y. Shiohara, A. Endo, Crystal growth of bulk high-Tc superconducting oxide materials. Materials Science and Engineering, R19, No1-2 (1997) 1-86.
    9. S. Jin, T.H. Tiefel, R.C. Sherwood, M.E. Davis, R.B. van Dover, G.W. Kammlott, R.A. Fastnacht and H.D. Keith, High critical currents in Y-Ba-Cu-O superconductors. Appl. Phys.Lett. 52 (1988) 2074.
    10. 金重勳編, 磁性技術手冊,中華民國磁性技術協會出版,民國九十一年七月。
    11. X. Chaud, D. Isfort, E. Beaugnon and R. tournier, Isothermal growth of large YBa2Cu3O7-x single domains up to 93mm. Physica C 341-348, (2000) 2413-2416.
    12. K. Salama, B. Selvamanickam, L. Gao and K. Sun, High current density in bulk YBa2Cu3Ox superconductor. Appl. Phys. Lett., 54 (1989) 2352.
    13. H. Hojaji, K.A. Michael, A. Barkatt, A.N. Thorpe, F.W. Matthew, I.G. Talmy, D.A. Haught and S. Alterescu, A comparative study of sintered and melt-grown recrystallized YBa2Cu3Ox. J. Mater. Res., 4 (1989) 28.
    14. C. Varanasi and P.J. McGinn, Mater. Lett., 17 (1993) 205.
    15. M. Murakami, M. Morita, K. Doi, and M. Miyamoto, Jpn. J. Appl. Phys. Part 2 28 (1989) 1189.
    16. H. Fujimoto, M. Murakami, S. Gotoh, N. Koshizuka and S. Tanaka, Advances in Superconductivity Ⅱ(1990) 285.
    17. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, The properties of YBCO superconductors prepared by a new approach: the “powder melting process”. Supercond. Sci. Technol. 3 (1990) 490.
    18. Z. Lian, Z. Pingxian, J. Ping, W. Keguang, W. Jingrong and W. Xiaozu, IEEE Trans. Mag. 27 (1991) 912.
    19. M. Morita, S. Takebayashi, M. Tanaka and K. Kimura, Adv. Supercond., 3 (1991) 733.
    20. K. Sawano, M. Morita, M. Tanaka, T. Sasaki, K. Kimura, S. Takebayashi, M. Kimura and K. Miyamoto, Jpn. J. Appl. Phys., 30 (1991) L1157.
    21. M. Murakami, Melt Processed High-Temperature Superconductors, World Scientific, 1992.
    22. R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak and D. Werder, Nature 329 (1987) 423.
    23. T. Hatano, A. Matsushita, K. Nakamura, Y. Sakka, T. Matsumoto and K. Ogawa, Jpn. J. Appl. Phys., 26 (1987) L721.
    24. R.J. Cava, B. Batlogg, C.H. Chen, E.A. Rietman, S.M. Zahurak and D. Werder, Nature, 329 (1987) 423.
    25. T.B. Lindemer, J.F. Hunley, J.E. Gates, Jr., A.L. Sutton, J. Brynestad, C.R. Hubbard and P.K. Gallagher, J. Am. Ceram. Soc., 72 (1989) 1775.
    26. B.J. Lee and D.N. Lee, J. Am. Ceram. Soc., 74 (1991) 78.
    27. JCPDS-ICDD, PDF-number:82-2302.
    28. JCPDS-ICDD, PDF-number:86-0472.
    29. M. Kuznetsov, C. Krauns, Y. Nakamura, T. Izumi and Y. Shiohara, Ternary phase diagram of SmO1.5-BaO-CuOy system for melt processing Physica C 357-360 (2001) 1068-1072.
    30. E. Goodilin, M. Kambara, T. Umeda and Y. Shiohara, Solubility of neodymium in copper-rich oxide melts in air and growth of Nd1+xBa2-XCu3Oz solid solution single crystal. Physica C 289 (1997) 37-50.
    31. M. Sano, Y. Hayakawa and M. Kumagawa, The effect of the substitution of Sm for Ba on the superconductor SmBa2Cu3Oy. Supercond. Sci. Technol., 9 (1996) 478-482.
    32. H. Fujimoto, C. Cai and E. Ohtabara, Sm-Ba-Cu-O bulk superconductors melt-processed in air. Physica C 372-376 (2002) 1111-1114.
    33. Shu-Hau Hsu, In-Gann Chen and Maw-Kuen Wu, Preparation of c-oriented Nd-Ba-Cu-O/Ag melt-growth sample in air. Supercond. Sci. Technol. 15 (2002) 653-659.
    34. Y.A. Jee, G.W. Hong, C.J. Kim and T.H. Sung, Dissolution of SmBa2Cu3O7-y seed crystals during top-seeded melt growth of YBa2Cu3O7-y. Supercond. Sci. Technol. 11 (1998) 650-658.
    35. S.I. Yoo, N. Sakai, H. Kojo, S. Takebayashi, N. Hayashi, M. Takahashi, K. Sawada, T. Higuchi and M. Murakami, Progress in melt processing of Nd-Ba-Cu-O superconductors. IEEE Transaction on Applied Superconductivity, vol.7 No.2 June 1997.
    36. C. Cai, K. Tachibana and H. Fujimoti, Study on single-domain growth of Y1.8Ba2.4Cu3.4Oy/Ag by using Nd123/MgO thin film as seed. Supercond. Sci. Technol. 13 (2000) 698-702.
    37. C. Cai and H. Fujimoto, Effects of Nd123/MgO thin film and MgO single-crystal seeds in isothermal solidification of YBaCuO/Ag. J. Mater. Res., Vol. 15, No. 8, Aug (2000) 1742-1748.
    38. C. Cai, H. Mori, H. Fujimoto, H. Liu, S. Dou, Crystal growth patterns in MgO seeded Y1.8Ba2.4Cu3.4Oy/Ag melt-texturing process. Physica C 357-360 (2001) 734-737.
    39. C. Cai and H. Fujimoto, Stable production of large single-domain Y1.8Ba2.4Cu3.4Oy/Ag by isothermal solidification. Physica C 357-360 (2001) 709-712.
    40. H. Fujimoto, H. Ozaku, E. Ohtabara, Sm-Ba-Cu-O bulk superconductors melt processed in air, using Nd123/MgO thin film cold seeding. Physica C 386 (2003) 198-201.
    41. W. Lo, D.A. Cardwell, Investigation of the controlled growth of large undoped and Pt-containing YBCO pseudo-crystals. Materials Science and Engineering B53 (1998) 45-53.
    42. S.M. Rao, J.K. Srivastava, K.S. Law, R.H. Chang, H.I. Chung and M. K. Wu, Growth mechanism in the crystallization of YBa2Cu3O6+ from peritecitc melts. Supercond. Sci. Technol. 14 (2001) 958-965.
    43. M. Morita, K. Kimura, K. Miyamoto, K. Sawano and M. Tanaka, US Patent 5308709 (1994).
    44. T Meignan, P J McGinn and C Varansi, Seeded melt texture growth processing of YBa2Cu3O6+x with Yb2O3 coatings. Supercond. Sci. Technol. 10 (1997) 109-112.
    45. Chan-Joong Kim, Young A Jee and Gye-Won Hong, Variables affecting the fabrication of single grain YBa2Cu3O7-y superconductors by the top-seeded melt growth process. Supercond. Sci. Technol. 13 (2000) 709-715.
    46. Chan-Joong Kim, Young A Jee, Sang-Chul Kwon, Tae-Hyun Sing and Gye-Won Hong, Control of YBCO growth at the compact/substrate interface by bottom seeding and Yb2O3 coating in seeded melt-growth processed YBCO oxides using a MgO substrate. Physica C 315 (1999) 263-270.
    47. Donglu Shi, K. Lahiri, D. Qu and S. Sagar, Surface nucleation, domain growth mechanisms, and factors dominating superconducting properties in seeded melt grown YBa2Cu3Ox. J. Mater. Res., vol. 12, no.11 (1997) 3036-3045.
    48. Y. Nakamura, A. Endo, Y. Shiohara, The relation between the undercooling and the growth rate of YBa2Cu3O6+x superconductive oxide. J. Mater. Res., vol. 11, No. 5 May (1996) 1094-1100.
    49. A. Endo, H.S. Chauhan, Y. Nakamura, Y. Shiohara, Relationship between growth rate and undercooling in Pt-added YBa2Cu3O7-x. J. Mater. Res., Vol. 11, No. 5, May (1996) 1114-1119.
    50. M. Kambara, N. Hari Babu, Y. H. Shi, D.A. Cardwell, Growth of melt-textured Nd-123 by hot seeding under reduced oxygen partial pressure. J. Mater. Res., Vol.16, No.4, Apr (2001) 1163-1170.
    51. N. Hayashi, P. Diko, K. Nagashima, S.I. Yoo, N. Sakai, M. Murakami, Fabrication of large single-domain Sm123 superconductors by OCMG method. Materials Science and Engineering B53 (1998) 104-108.
    52. 戰國, 單晶粒Y-Ba-Cu-O高溫超導體之製程研究, 國立成功大學材料科學及工程學系碩士論文,中華民國八十六年六月.
    53. N. Sakai, S. I. Yoo and M. Murakami, Control of Y2BaCuO5 size and morphology in melt-processed YBa2Cu3O7-superconductor J. Mater. Res., Vol.10, No.7, Jul (1995) 1611-1621.
    54. N. Ogawa, I. Hirabayashi and S. Tanaka, Physica C 177 (1991) 101.
    55. Shih-Yun Chen, In-Gann Chen and Maw-Kuen Wu, The effect of pd/pt addition on the superconductivity of Sm-Ba-Cu-O materials. Supercond. Sci. Technol. 15 (2002) 741-747.
    56. M. Murakami, Key issues for the characterization of RE-Ba-Cu-O systems(RE: Nd, Sm, Eu, Gd). Applied Superconductivity Vol.6, No.2-5 (1998) 51-59.
    57. Ting Wu, T. Egi, R. Itti, K. Kuroda and N. Koshizuka, Advances in Superconductivity VIII (1996) 481.
    58. L. Zhou, S. K. Chen, K. G.. Wang, X. Z. Wu, P. X. Zhang and Y. Feng, Synthesis of ultrafine Y2BaCuO5 powder and its incorporation into YBCO bulk by powder melting process. Physica C 363 (2001) 99-106.
    59. JCPDS-ICDD, PDF-number:45-0415.
    60. JCPDS-ICDD, PDF-number:77-1724.
    61. JCPDS-ICDD, PDF-number:82-2321.
    62. X.L. Xu, J.D. Guo, Y.Z. Wang, A. Sozzi, Synthesis of nanoscale superconducting YBCO by a novel technique. Physica C 371 (2002) 129-132.
    63. J. Raittila, H. Huhtinen, P. Paturi, Yu.P. Stepanov, Preparation of superconducting YBa2Cu3O7-y nanopowder by deoxydation in Ar before final oxygenation. Physica C 371(2002) 90-96.
    64. H. Taguchi, D. Matsuda, M. Nagao, J. Am. Ceram. Soc. 75, 1, (1992) 201-202.
    65. R. N. Singh, S. K. Tiwari, S. P. Singh, N. K. Singh, G. Poillerat P. Chartier, J. Chem. Soc. Faraday Trans., 92, 14, (1996) 2539-2598.
    66. JCPDS-ICCD, PDF-number:81-0878.
    67. M. Mironova, D.F. Lee, K. Salama, TEM and critical current density studies of melt-textured YBa2Cu3Ox with silver and Y2BaCuO5 additions. Physica C 211 (1993) 188-204.
    68. M. Murakami, S.I. Yoo, T. Higuchi, N. Sakai, M. Watabiki, N. Koshizuka, S. Tanaka, A new type of pinning center in melt grown Nd123 and Sm123. Physica C 235-240 (1994) 2781-2782.
    69. E. Sudhakar Reddy, K. D. Otzschi, J. Shimoyama, K. Kishio, On the intermediate peak in melt textured YBa2Cu3Oy superconductors. Physica C 361 (2001)114-120.
    70. J. Yoshioka, K. Iida, M. Murakami, The fabrication of SmBa2Cu3Oy bulk superconductor using (Nd, Sm)422 in air. Physica C 357-360 (2001) 681-684.
    71. J. Yoshioka, K. Iida, M. Murakami, Study of (Nd, Sm)422 solid solution and its effect on the melt process of Nd123 bulk superconductor. Physica C 354 (2001) 401-405.
    72. M. Nakamura, M. Kambara, T. Umeda, Y. Shiohara, Effect of oxygen partial pressure on the neodymium solubility in Ba-Cu-O solvent. Physica C 266 (1996) 178-182.
    73. D. Dew-Hughes, Flux pinning mechanisms in type ΙΙsuperconductors.philos. Mag. 30, (1974) 293-303.
    74. R.P. Huebener, Magnetic Flux Structures in Superconductors, Springer series in Solid-State Sciences, (1979) 186-188.
    75. Shih-Yun Chen, Ping-Chi Hseih, In-Gann Chen, Mow-Kuen Wu, Effect of nano-sized Sm2BaCuO5 particles additions on the pinning mechanisms of Sm-Ba-Cu-O materials. Submitted for Journal of Materials Research. (2003).
    76. H. Yamasaki, K. Endo, S. Kosaka, M. Umoda, S. Yoshida, and K. Kajimura, Phys. Rev. Lett. 70, (1993) 3331
    77. L. Klein, E. R. Yacoby, Y. Yeshurn, A. Erb, G. Muller-Vogt, V. Breit, and H. Wuhl, Phys. Rev. B 49, (1994) 4403
    78. T. Izumi, Y. Nakamura, and Y. Shiohara, J. Cryst. Growth 128 (1993) 757-761.
    79. S.Y. Chen, I.G. Chen, C.P. Liu, P.C. Hsieh and M.K. Wu, The relationship between nano-scale Sm211/Sm123 interfaces and superconductivity of Sm-Ba-Cu-O materials. Accepted for the publication of IEEE Transactions on Applied Superconductivity (2003).
    80. T. Izumi and Y. Shiohara, Growth mechanism of YBa2Cu3Oy superconductors prepared by the horizontal Bridgeman method. J. Mat. Res. 7 (1992) 16.
    81. M. Kambara, T. Umeda, M. Tagami, X. Yao, E.A. Goodlin and Y. Shiohara, J. Am. Ceram. Soc. 81 (1998) 2116.

    下載圖示 校內:2004-07-30公開
    校外:2004-07-30公開
    QR CODE