| 研究生: |
簡禎佑 Chien, Chen-Yu |
|---|---|
| 論文名稱: |
由深共熔溶劑促進酯肽交換反應:原生胜肽的簡易合成路徑 Ester-mediated peptide formation promoted by deep eutectic solvents: A facile pathway to proto-peptides |
| 指導教授: |
游聲盛
Yu, Sheng-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 深共熔溶劑 、酯肽 、原始胜肽 、化學演化 、生命起源 、共聚多肽 、胜肽序列控制 |
| 外文關鍵詞: | deep eutectic solvents, depsipeptides, proto-peptides, chemical evolution, origin-of-life, co-polypeptides, sequence control of peptides |
| 相關次數: | 點閱:164 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統合成胜肽的方法有許多缺點,例如使用有害的溶劑以及缺乏有效的偶聯劑促進胺基酸形成胜肽鍵。在前人的研究中,藉由在乾溼循環反應中混合羥基酸和胺基酸,可不必透過添加偶聯劑而是透過形成酯肽來合成胜肽。然而此反應仍有諸多挑戰需要克服。首先,許多胺基酸或是多肽,在此種體系中的溶解度較低,形成不均質的系統造成反應效率降低。而在共聚合的過程中,易產生具有酯鍵以及醯胺鍵的隨機共聚酯肽,必須透過額外的水解反應才會產生胜肽,為了解決前述問題,在此研究中引入具有環境友善以及化學催化特性的深共熔溶劑來輔助胜肽的合成。
在此研究中,我們利用四級胺氯鹽形成深共熔溶劑以進行乙醇酸及甘胺酸的酯肽交換反應。乙醇酸可先與四級胺氯鹽以氫鍵作用形成深共熔溶劑,乙醇酸再與甘胺酸反應形成多肽。我們發現此種以羥基酸及四級胺氯鹽為主的深共熔溶劑可以有效地減少羧酸酯和胜肽鍵結形成的隨機共聚物,直接生成多肽。在我們測試的四級胺氯鹽中,四乙基氯化銨所形成的深共熔溶劑可促成最佳的單體轉化率並形成長鏈的胜肽。另外,在四乙基氯化銨的作用下,可選擇性地合成在N末端帶有乙醇酸的胜肽標準品,這些標準品可與四乙基氯化銨形成新的深共熔溶劑。傅立葉轉換紅外線光譜和示差掃描熱分析結果證實了深共熔溶劑中多肽與四乙基氯化銨形成氫鍵的交互作用以及極低的熱轉化溫度。四乙基氯化銨的濃度及乙醇酸/甘胺酸的比率會影響胜肽的產率和鏈長分佈。於深共熔溶劑中逐漸加入不同種類的胺基酸可以合成嵌段共聚多肽或是進行胜肽序列控制。推測在深共熔溶劑中可以合成高產量胜肽的可能機制如下: (一) 四級胺氯鹽與乙醇酸形成深共熔溶劑因而降低酯化速率; (二) 在四級胺氯鹽作用下,增強胺基酸中胺基的親核性以增進酯-醯胺交換反應形成胜肽鍵; (三) 在N末端帶有乙醇酸的胜肽產物進而與四級胺氯鹽形成穩定且均質的深共熔溶劑。
總結來說,深共熔溶劑不只擔任反應物以及反應溶劑的角色,亦是扮演催化劑的角色,選擇性的催化合成高產率的胜肽產物,因此,深共熔溶劑提供了一種無需使用偶聯劑和有毒溶劑且可以在溫和條件下簡單合成胜肽的方法。
Traditional ways to synthesize peptides have many drawbacks like using toxic solvents and coupling agents with low atomic efficiency. Previous reports proposed a pathway known as ester-mediated amide bond formation to synthesize peptides by mixing hydroxy acids and amino acids in an oscillating wet-dry cycle without using the coupling agents. However, the system yielded random copolymers linked by both amide and ester bonds under a heterogeneous environment. Additional hydrolysis treatment was required to reduce the complexity of products and to reveal the peptide backbones.
To address the above challenges, we introduce the concepts of deep eutectic solvents (DESs) into the synthesis of peptides because DESs are known for their sustainability and catalytic properties. Glycolic acid and tetraethylammonium chloride (TEACl) formed a DES as a solvent to dissolve amino acids. Glycolic acid then copolymerized with amino acids by esterification and ester-amide exchange reaction. We demonstrated DESs facilitated the formation of amino acids-enriched peptides rather than the depsipeptides with mixed esters and amides as backbones. Among all the quaternary ammonium chlorides tested, DESs containing TEACl showed the highest conversion of amino acids and enabled the formation of long chain peptides. Standard compounds of peptides with glycolic acid at the N-terminus could be selectively synthesized in the presence of TEACl. Additionally, we found the reaction mixtures and the mixtures of standard compounds with TEACl also formed DESs. The hydrogen bonding and the thermal transition temperature of DESs were confirmed by FT-IR and DSC. The yield and the distribution of peptides were also influenced by the concentration of TEACl and the ratio of glycolic acid/glycine. Peptides with desired sequences can also be achieved by gradually adding different amino acids into the DES system. The possible mechanism behind the selective synthesis of amino acids-enriched peptides with high yield in the DES may come from the following process: (1) Reduced rate of esterification by forming DES from TEACl and glycolic acid. (2) Enhanced nucleophilicity of amino groups to improve the rate of ester-amide exchange in the presence of TEACl. (3) Formation of stable and homogenous DES from the mixture of TEACl and products with glycolic acid residue at the N-terminus.
In summary, DES not only acts as the reaction medium and reactants, but also plays the role of catalyst to favor the formation of amino acids-enriched oligopeptides. Therefore, DES provides a facile and sustainable method to synthesize peptides under a mild condition without using coupling agents and toxic solvents.
1. N. L. Benoiton, Chemistry of peptide synthesis. Taylor & Francis: 2006.
2. O. Koniev and A. Wagner, Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chemical Society Reviews 2015, 44 (15), 5495-5551.
3. C. A. G. N. Montalbetti and V. Falque, Amide bond formation and peptide coupling. Tetrahedron 2005, 61 (46), 10827-10852.
4. M. Zhang, J. Zhao and J. Zheng, Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. Soft Matter 2014, 10 (38), 7425-7451.
5. H. R. Kricheldorf, Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angewandte Chemie 2006, 45 (35), 5752-5784.
6. C. Bonduelle, Secondary structures of synthetic polypeptide polymers. Polymer Chemistry 2018, 9 (13), 1517-1529.
7. A. Henninot, J. C. Collins and J. M. Nuss, The current state of peptide drug discovery: back to the future? Journal of Medicinal Chemistry 2018, 61 (4), 1382-1414.
8. I. W. Hamley, Small bioactive peptides for biomaterials design and therapeutics. Chemical Reviews 2017, 117 (24), 14015-14041.
9. E. Ruoslahti and M. D. Pierschbacher, New perspectives in cell adhesion: RGD and integrins. Science 1987, 238 (4826), 491-497.
10. A. Baird, D. Schubert, N. Ling and R. Guillemin, Receptor- and heparin-binding domains of basic fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America 1988, 85 (7), 2324-2328.
11. Z. Yang, H. Xu and X. Zhao, Designer self-assembling peptide hydrogels to engineer 3D cell microenvironments for cell constructs formation and precise oncology remodeling in ovarian cancer. Advanced Science 2020, 7 (9), 1903718.
12. R. J. Malonis, J. R. Lai and O. Vergnolle, Peptide-based vaccines: current progress and future challenges. Chemical Reviews 2020, 120 (6), 3210-3229.
13. L. C. Szymczak, H-Y Kuo and M. Mrksich, Peptide arrays: development and application. Analytical Chemistry 2018, 90 (1), 266-282.
14. O. Rathore and D. Y. Sogah, Nanostructure formation through β-sheet self-assembly in silk-based materials. Macromolecules 2001, 34, 1477-1486.
15. M. Lakshmanan, Y. Kodama, T. Yoshizumi, K. Sudesh and K. Numata, Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules 2013, 14 (1), 10-16.
16. D. I. Chan, E. J. Prenner and H. J. Vogel, Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochimica et Biophysica Acta 2006, 1758 (9), 1184-1202.
17. P. Simerska, P. M. Moyle and I. Toth, Modern lipid-, carbohydrate-, and peptide-based delivery systems for peptide, vaccine, and gene products. Medicinal Research Reviews 2011, 31 (4), 520-547.
18. H. Y. Chow, Y. Zhang, E. Matheson and X. Li, Ligation technologies for the synthesis of cyclic peptides. Chemical Reviews 2019, 119 (17), 9971-10001.
19. D. G. Rivera, G. M. Ojeda-Carralero, L. Reguera and E. V. Van der Eycken, Peptide macrocyclization by transition metal catalysis. Chemical Society Reviews 2020, 49 (7), 2039-2059.
20. B. Albada and N. Metzler-Nolte, Organometallic-peptide bioconjugates: synthetic strategies and medicinal applications. Chemical Reviews 2016, 116 (19), 11797-11839.
21. P. G. Dougherty, A. Sahni and D. Pei, Understanding cell penetration of cyclic peptides. Chemical Reviews 2019, 119 (17), 10241-10287.
22. A. A. Vinogradov, Y. Yin and H. Suga, Macrocyclic peptides as drug candidates: recent progress and remaining challenges. Journal of the American Chemical Society 2019, 141 (10), 4167-4181.
23. C. A. Machado, I. R. Smith and D. A. Savin, Self-assembly of oligo- and polypeptide-based amphiphiles: recent advances and future possibilities. Macromolecules 2019, 52 (5), 1899-1911.
24. O. Zozulia, M. A. Dolan and I. V. Korendovych, Catalytic peptide assemblies. Chemical Society Reviews 2018, 47 (10), 3621-3639.
25. Z. Huang, S. Guan, Y. Wang, G. Shi, L. Cao, Y. Gao, Z. Dong, J. Xu, Q. Luo and J. Liu, Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: a novel hydrolase model. Journal of Materials Chemistry B 2013, 1 (17), 2297-2304.
26. M. Gorlero, R. Wieczorek, K. Adamala, A. Giorgi, M. E. Schinina, P. Stano and P. L. Luisi, Ser-His catalyses the formation of peptides and PNAs. Federation of European Biochemical Societies Letters 2009, 583 (1), 153-156.
27. M. Frenkel-Pinter, M. Samanta, G. Ashkenasy and L. J. Leman, Prebiotic peptides: molecular hubs in the origin of life. Chemical Reviews 2020.
28. H. Fan, A. B. Conn, P. B. Williams, S. Diggs, J. Hahm, H. B. Gamper, Jr., Y. M. Hou, S. E. O'Leary, Y. Wang and G. M. Blaha, Transcription-translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits. Nucleic Acids Research 2017, 45 (19), 11043-11055.
29. J. Ang, D. Ma, B. T. Jung, S. Keten and T. Xu, Sub-20 nm stable micelles based on a mixture of coiled-coils: a platform for controlled ligand presentation. Biomacromolecules 2017, 18 (11), 3572-3580.
30. G. K. Auer and D. B. Weibel, Bacterial cell mechanics. Biochemistry 2017, 56 (29), 3710-3724.
31. S. S. Krishna, I. Majumdar and N. V. Grishin, Structural classification of zinc fingers: survey and summary. Nucleic Acids Research 2003, 31 (2), 532-550.
32. K. Ruiz-Mirazo, C. Briones and A. de la Escosura, Prebiotic systems chemistry: new perspectives for the origins of life. Chemical Reviews 2014, 114 (1), 285-366.
33. G Steinman, D H Kenyon and M Calvin, The mechanism and protobiochemical relevance of dicyanamide-medicated peptide synthesis. Biochimica et Biophysica Acta 1966, 124, 339-350.
34. L. Leman, L. Orgel and M. R. Ghadiri, Carbonyl sulfide-mediated prebiotic formation of peptides. Science 2004, 306 (5694), 283-286.
35. L. J. Leman, Z. Z. Huang and M. R. Ghadiri, Peptide bond formation in water mediated by carbon disulfide. Astrobiology 2015, 15 (9), 1-8.
36. A. Isidro-Llobet, M. N. Kenworthy, S. Mukherjee, M. E. Kopach, K. Wegner, F. Gallou, A. G. Smith and F. Roschangar, Sustainability challenges in peptide synthesis and purification: from R&D to production. The Journal of Organic Chemistry 2019, 84 (8), 4615-4628.
37. O. Al Musaimi, B. G. de la Torre and F. Albericio, Greening Fmoc/tBu solid-phase peptide synthesis. Green Chemistry 2020, 22 (4), 996-1018.
38. J. E. Semple, B. Sullivan and K. N. Sill, Large-scale synthesis of α-amino acid-N-carboxyanhydrides. Synthetic Communications 2016, 47 (1), 53-61.
39. J. Cheng and T. J. Deming, Synthesis of polypeptides by ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Topics in Current Chemistry 2012, 310, 1-26.
40. Z. Song, Z. Tan and J. Cheng, Recent advances and future perspectives of synthetic polypeptides from N-carboxyanhydrides. Macromolecules 2019, 52 (22), 8521-8539.
41. N. Ferrer-Miralles, J. Domingo-Espin, J. L. Corchero, E. Vazquez and A. Villaverde, Microbial factories for recombinant pharmaceuticals. Microbial Cell Factories 2009, 8, 17.
42. F. R. Blattner, G. Plunkett III, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau and Y. Shao, The complete genome sequence of Escherichia coli K-12. Science 1997, 277 (5331), 1453-1462.
43. T. W. Overton, Recombinant protein production in bacterial hosts. Drug Discovery Today 2014, 19 (5), 590-601.
44. J. G. Forsythe, S-S Yu, I. Mamajanov, M. A. Grover, R. Krishnamurthy, F. M. Fernandez and N. V. Hud, Ester-mediated amide bond formation driven by wet-dry cycles: a possible path to polypeptides on the prebiotic earth. Angewandte Chemie 2015, 54 (34), 9871-9875.
45. S. S. Yu, R. Krishnamurthy, F. M. Fernandez, N. V. Hud, F. J. Schork and M. A. Grover, Kinetics of prebiotic depsipeptide formation from the ester-amide exchange reaction. Physical Chemistry Chemical Physics 2016, 18 (41), 28441-28450.
46. J. G. Forsythe, A. S. Petrov, W. C. Millar, S. S. Yu, R. Krishnamurthy, M. A. Grover, N. V. Hud and F. M. Fernandez, Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America 2017, 114 (37), E7652-E7659.
47. S. S. Yu, M. D. Solano, M. K. Blanchard, M. T. Soper-Hopper, R. Krishnamurthy, F. M. Fernández, N. V. Hud, F. J. Schork and M. A. Grover, Elongation of model prebiotic proto-peptides by continuous monomer feeding. Macromolecules 2017, 50 (23), 9286-9294.
48. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, 70-71.
49. E. L. Smith, A. P. Abbott and K. S. Ryder, Deep eutectic solvents (DESs) and their applications. Chemical Reviews 2014, 114 (21), 11060-11082.
50. Q. Zhang, K. D. O. Vigier, S. Royer and F. Je´roˆme, Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews 2012, 41 (21), 7108-7146.
51. C. Florindo, L. C. Branco and I. M. Marrucho, Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents. ChemSusChem 2019, 12 (8), 1549-1559.
52. A. Roda, A. A. Matias, A. Paiva and A. R. C. Duarte, Polymer science and engineering using deep eutectic solvents. Polymers 2019, 11 (5).
53. C. J. Clarke, W-C Tu, O. Levers, A. Bröhl and J. P. Hallett, Green and sustainable solvents in chemical processes. Chemical Reviews 2018, 118 (2), 747-800.
54. A. E. Ünlü*, A. Arıkaya and S. Takaç, Use of deep eutectic solvents as catalyst: a mini-review. Green Processing and Synthesis 2019, 8, 355–372.
55. L. I.N. Tomé, V. Baião, W. da Silva and C. M.A. Brett, Deep eutectic solvents for the production and application of new materials. Applied Materials Today 2018, 10, 30-50.
56. Y. Zhanga, X. Jib and X. Lu, Choline-based deep eutectic solvents for CO2 separation: review and thermodynamic analysis. Renewable and Sustainable Energy Reviews 2018, 97, 436-455.
57. R. K. Tak, P. Patel, S. Subramanian, R. I. Kureshy and N. H. Khan, Cycloaddition reaction of spiro-epoxy oxindole with CO2 at atmospheric pressure using deep eutectic solvent. ACS Sustainable Chemistry & Engineering 2018, 6 (9), 11200-11205.
58. M. H. Zainal-Abidin, M. Hayyan, A. Hayyan and N. S. Jayakumar, New horizons in the extraction of bioactive compounds using deep eutectic solvents: a review. Analytica Chimica Acta 2017, 979, 1-23.
59. M. H. Zainal-Abidin, M.Hayyan, G. C. Ngoha, W. F. Wongd and C. Y. Looi, Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. Journal of Controlled Release 2019, 316, 168-195.
60. M. Zdanowicz, K. Wilpiszewska and T. Spychaj, Deep eutectic solvents for polysaccharides processing. A review. Carbohydrate Polymers 2018, 200, 361-380.
61. T. E. Achkar, S. Fourmentin and H. Greige-Gerges, Deep eutectic solvents: an overview on their interactions with water and biochemical compounds. Journal of Molecular Liquids 2019, 288.
62. T. Cai and H. Qiu, Application of deep eutectic solvents in chromatography: a review. TrAC Trends in Analytical Chemistry 2019, 120.
63. P. Liu, J-W Hao, L-P Mo and Z-H Zhang, Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances 2015, 5 (60), 48675-48704.
64. S. Bednarz, M. Fluder, M. Galica, D. Bogdal and I. Maciejaszek, Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. Journal of Applied Polymer Science 2014, 131 (16).
65. C. Mukesh, K. K. Upadhyay, R. V. Devkar, N. A. Chudasama, G. G. Raol and K. Prasad, Preparation of a noncytotoxic hemocompatible ion gel by self-polymerization of HEMA in a green deep eutectic solvent. Macromolecular Chemistry and Physics 2016, 217 (17), 1899-1906.
66. J. Wang, J. Han, M. Y. Khan, D. He, H. Peng, D. Chen, X. Xie and Z. Xue, Deep eutectic solvents for green and efficient iron-mediated ligand-free atom transfer radical polymerization. Polymer Chemistry 2017, 8 (10), 1616-1627.
67. J. D. Mota-Moralesa, R. J. Sánchez-Leijab, A. Carranzac, J. A. Pojmanc, F. del Monted and G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: green synthesis of functional materials. Progress in Polymer Science 2018, 78, 139-153.
68. A. Gertrudes, R. Craveiro, Z. Eltayari, R. L. Reis, A. Paiva and A. R. C. Duarte, How do animals survive extreme temperature amplitudes? The role of natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering 2017, 5 (11), 9542-9553.
69. E. Durand, J. Lecomte, B. Baréa and P. Villeneuve, Towards a better understanding of how to improve lipase-catalyzed reactions using deep eutectic solvents based on choline chloride. European Journal of Lipid Science and Technology 2014, 116 (1), 16-23.
70. S. Mao, L. Yu, S. Ji, X. Liu and F. Lu, Evaluation of deep eutectic solvents as co-solvent for steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex. Journal of Chemical Technology & Biotechnology 2015, 91 (4), 1099-1104.
71. L. Mu, Y. Shi, T. Ji, L. Chen, R. Yuan, H. Wang and J. Zhu, Ionic grease lubricants: protic [triethanolamine][oleic acid] and aprotic [choline][oleic ccid]. ACS Applied Materials & Interfaces 2016, 8 (7), 4977-4984.
72. A. Abo-Hamad, M. Hayyan, M. A. AlSaadi and M. A. Hashim, Potential applications of deep eutectic solvents in nanotechnology. Chemical Engineering Journal 2015, 273, 551-567.
73. J. H. Oh and J. S. Lee, Synthesis of gold microstructures with surface nanoroughness using a deep eutectic solvent for catalytic and diagnostic applications. Journal of Nanoscience and Nanotechnology 2014, 14 (5), 3753-3757.
74. A. Umar, M. Munir, M. Riaz, M. Murtaza, R. Sultana, G. Srinivasan, A. Firdous and M. Saeed, Properties and green applications based review on highly efficient deep eutectic solvents. Egyptian Journal of Chemistry 2019, 63 (1), 59-69.
75. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and P. Shikotra, Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorganic Chemistry 2005, 44, 6497−6499.
76. M. R. Ali, M. Z. Rahman and S. S. Saha, Electroless and electrolytic deposition of nickel from deep eutectic solvents based on choline chloride. Indian Journal of Chemical Technology 2014, 21, 127-133.
77. S. Wang, X. Guo, H. Yang, J. Dai, R. Zhu, J. Gong, L. Peng and W. Ding, Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid. Applied Surface Science 2014, 288, 530-536.
78. F. Codari, D. Moscatelli, G. Storti and M. Morbidelli, Characterization of low-molecular-weight PLA using HPLC. Macromolecular Materials and Engineering 2010, 295 (1), 58-66.
79. T. D. Campbell, R. Febrian, H. E. Kleinschmidt, K. A. Smith and P. J. Bracher, Quantitative analysis of glycine oligomerization by ion-pair chromatography. ACS Omega 2019, 4 (7), 12745-12752.
80. S. Fox, P. Dalai, J-F Lambert and H. Strasdeit, Hypercondensation of an amino acid: Synthesis and characterization of a black glycine polymer. Chemistry 2015, 21 (24), 8897-8904.
81. M. Francisco, A. van den Bruinhorst and M. C. Kroon, New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chemistry 2012, 14 (8).
82. C. Stani, L. Vaccari, E. Mitri and G. Birarda, FTIR investigation of the secondary structure of type I collagen: new insight into the amide III band. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020, 229, 118006.
83. M. Franciscoa, A. van den Bruinhorsta, L. F. Zubeira, C. J. Peters and M. C. Kroon, A new low transition temperature mixture (LTTM) formed by choline chloride + lactic acid: characterization as solvent for CO2 capture. Fluid Phase Equilibria 2013, 340, 77-84.
84. J. Steigman and D. Sussman, Acid-base reactions in concentrated aqueous quaternary ammonium salt solutions. I. strong acids and bases, carboxylic acids, amines, and phenol. Journal of the American Chemical Society 1967, 89, 6400-6406.