簡易檢索 / 詳目顯示

研究生: 葉乃綺
Yeh, Nai-Chi
論文名稱: 流行性感冒奈米疫苗之研發
Development of nanovaccines for influenza
指導教授: 蕭璦莉
Shiau, Ai-Li
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 56
中文關鍵詞: 流行性感冒病毒奈米疫苗半乳糖凝集素-1金奈米
外文關鍵詞: influenza virus, nanovaccine, galectin-1, gold nanoparticle
相關次數: 點閱:131下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流行性感冒病毒 (influenza virus, IAV) 具高度罹病率及死亡率,因此被列為相當嚴重的呼吸道感染疾病之一。由於病毒套膜上的血球凝集素 (hemagglutinin) 和神經氨酸酶 (neuraminidase) 具有高變異特性,因此極需發展廣效性的流行性感冒病毒疫苗。目前已有許多研究致力於改進或開發新型流行性感冒病毒疫苗,但仍有許多問題需要解決。半乳糖凝集素-1 (galectin-1) 屬於S型凝集素 (lectin),其具有序列保守的醣類辨識區域 (carbohydrate recognition domain),透過這段區域可辨識帶有半乳糖的寡醣鏈。由實驗室先前發表過的文章發現,galectin-1可直接結合上A型流行性感冒病毒套膜上的醣蛋白,並抑制其血球凝集素的活性和病毒的感染力。此外,我們實驗室最近的研究亦顯示,galectin-1共價接合上金奈米粒子 (AuNP/Gal-1) 與單純galectin-1相比,能顯著增強與流行性感冒病毒結合的親合力,並顯著降低抗病毒的有效濃度。因此,在本研究中,我們探討以AuNP/Gal-1結合去活性流行性感冒病毒是否可發展為一種新型流行性感冒病毒的疫苗。首先,以肌肉注射方式給予小鼠AuNP/Gal-1混合去活性流行性感冒病毒 (IAV/AuNP/Gal-1),使小鼠血清產生抗病毒的IgM和IgG,但不無IgA之產生。進而將免疫接種IAV/AuNP/Gal-1後的小鼠脾臟細胞,在體外以高劑量的去活性流行性感冒病毒刺激則有較好的增生現象。此外,給予IAV/AuNP/Gal-1的小鼠比單純給予去活性病毒的組別,會隨著AuNP/Gal-1劑量提升而增加抗流行性感冒病毒的IgG量。然而,免疫接種IAV/AuNP/Gal-1和IAV/Alum的小鼠組別,在誘導個體產生IgG、IgG1及IgG2a的效力上,並無顯著差異。進一步以AuNP/Gal-1刺激骨髓細胞分化的樹突細胞,相較於單獨以galectin-1刺激的組別,AuNP/Gal-1誘導產生甲型腫瘤壞死因子 (tumor necrosis factor-α, TNF-α)、白介素6 (interlukin-6, IL-6)、白介素10 (interlukin-10, IL-10) 的量顯著提升。值得注意的是,以IAV/AuNP/Gal-1免疫接種的小鼠,相較單獨給予去活性病毒的組別,血清可中和流行性感冒病毒感染的能力較好。總而言之,AuNP/Gal-1確實透過直接包裹病毒及刺激樹突細胞的活性來促進抗流行性感冒病毒抗體的產生。由於galectin-1可與不同亞型的流行性感冒病毒結合,因此我們認為AuNP/Gal-1可廣泛的應用於開發抵抗不同亞型的流行性感冒病毒的新型疫苗。

    Influenza is an important infectious disease that causes significant morbidity and mortality. Because of the high variability of viral hemagglutinin and neuraminidase, it is highly desirable to develop broad-spectrum influenza vaccines. Much effort has been devoted to developing improved or novel vaccines for influenza; however, there is still a long way to go. Galectin-1, which belongs to S-type lectins, contains conserved carbohydrate recognition domains (CRDs) recognizing galactose-containing oligosaccharides. We have reported previously that galectin-1 can directly bind to the envelope glycoproteins of influenza A virus and inhibit its hemagglutination activity and infectivity. Moreover, our recent studies showed that galectin-1 conjugated on gold nanoparticle (AuNP/Gal-1) dramatically enhanced the binding affinity to influenza virus and reduced the EC50 of anti-influenza viral activity as compared to galectin-1 alone. In this study, we tested whether AuNP/Gal-1 combined with inactivated influenza virus could be used as a novel vaccine for influenza. We found that mice immunized intramuscularly with AuNP/Gal-1 admixed with inactivated influenza A virus (IAV/AuNP/Gal-1) produced IgM and IgG, but not IgA against influenza virus in the serum. The splenocytes from mice treated with IAV/AuNP/Gal-1 proliferated in response to high doses of inactivated influenza virus in vitro. Furthermore, mice treated with IAV/AuNP/Gal-1 induced higher anti-influenza virus IgG in a dose-dependent manner than those treated with inactivated virus alone. However, there was no significant difference in the efficacy of IgG, IgG1 and IgG2a production between mice immunized with IAV/AuNP/Gal-1 and with IAV/Alum. In addition, bone-marrow-derived dendritic cells stimulated with AuNP/Gal-1 induce higher TNF-α, IL-6 and IL-10 than those stimulated with galectin-1 alone. Notably, levels of neutralizing antibodies against influenza virus produced from mice immunized with IAV/AuNP/Gal-1 were higher than those immunized with inactivated virus alone. In conclusion, AuNP/Gal-1 indeed helped production of anti-influenza virus antibody through directly wrapping virus and stimulating dendritic cells activation. Since galectin-1 can bind to different subtypes of influenza virus, AuNP/Gal-1 may have broad applications in the development of novel vaccines against different subtypes and strains of influenza virus.

    合格證書 I 中文摘要 II 英文摘要 IV 致謝 VI 目錄 VIII 圖示目錄 XI 縮寫表 XII 第一章 緒論 1 一、流行性感冒病毒 (influenza virus) 1 1. 流行性感冒病毒的結構與感染過程 1 2. 流行性感冒病毒的致病機轉 2 3. 流行性感冒病毒的疫苗發展策略 3 二、半乳糖凝集素-1 (galectin-1, Gal-1) 4 三、金奈米粒子(gold nanoparticle, AuNP) 6 第二章 研究目的 8 第三章 材料與方法 9 一、材料 9 1. 細胞 9 2. 病毒株 9 3. 質體 9 4. 實驗動物 9 5. 培養基 9 6. 藥品 10 7. 試劑 11 8. 耗材 12 9. 抗體 13 10. 套組 13 二、方法 14 1. 細胞培養 14 2. 病毒培養 15 3. galectin-1蛋白的生產 16 4. galectin-1蛋白的純化 16 5. 濃縮重組galectin-1 16 6. AuNP/Gal-1置備 17 7. SDS-PAGE 17 8. 西方點墨法 18 9. 動物實驗 18 10. 血球凝集試驗 18 11. 血球凝集抑制試驗 19 12. 抗體結合病毒測試 19 13. 小鼠脾臟細胞刺激增生 19 14 病毒中和試驗 20 15. 酵素連結免疫吸附分析法 20 16. 統計方法 20 第四章 實驗結果 22 一、galectin-1純化與AuNP/Gal-1製備 22 二、建立實驗動物模式 22 三、AuNP/Gal-1能增進血清中抗IAV的IgG和IgM產生及促進小鼠脾臟細胞增生 23 四、AuNP/Gal-1和alum誘導血清中抗IAV的IgG量無差異,且免疫反應偏向Th2 24 五、AuNP/Gal-1會刺激骨髓分化的樹突細胞活化,並分泌促T細胞分化成Th2的細胞激素 25 六、AuNP/Gal-1誘導血清中抗IAV的抗體具有較好的IAV中和效果 26 七、給予AuNP/Gal-1/IAV免疫後的小鼠在感染流感病毒後具有較好保護效果 26 八、建立ICR實驗動物模式 27 九、在ICR實驗動物模式中,AuNP/Gal-1能增進血清中抗IAV的IgG和IgM產生,但與alum誘導血清中抗IAV的抗體量無差異 28 第五章 討論 29 galectin-1確實可以促進抗IAV抗體的產生 29 小鼠以IAV/AuNP/Gal-1免疫接種,刺激脾臟細胞其增生現象與Saline接種組別無顯著差異 30 AuNP/Gal-1可刺激樹突細胞分泌較高量誘導T細胞走向Th2細胞的細胞激素 31 AuNP/Gal-1在流行性感冒疫苗的優勢及未來發展 32 參考文獻 34 圖示 40 圖一、galectin-1純化與AuNP/Gal-1製備 40 圖二、建立實驗動物模式 42 圖三、AuNP/Gal-1能增進血清中抗IAV的IgG和IgM產生,並且可以刺激小鼠脾臟細胞增生 44 圖四、增加AuNP/Gal-1劑量,能提升血清中抗IAV的IgG量 46 圖五、AuNP/Gal-1和alum誘導血清中抗IAV的IgG量無差異,並可誘導免疫反應偏向第二型輔助T細胞 47 圖六、AuNP/Gal-1會刺激BMDC活化,並分泌促T細胞分化成Th2的細胞激素 49 圖七、AuNP/Gal-1誘導血清中抗IAV的抗體具有較好的IAV中和效果 50 圖八、給予AuNP/Gal-1/IAV免疫的小鼠在感染流感病毒後有較好保護效果 52 圖九、建立ICR實驗動物模式 54 圖十、在ICR實驗動物模式中,AuNP/Gal-1能增進血清中抗IAV的IgG和IgM產生,但與alum誘導血清中抗IAV的抗體量無差異 56

    1. Al-Mazrou, A., D. W. Scheifele, T. Soong, and G. Bjornson. 1991. Comparison of adverse reactions to whole-virion and split-virion influenza vaccines in hospital personnel. CMAJ. 145:213-218.
    2. Barondes, S. H., D. N. Cooper, M. A. Gitt, and H. Leffler. 1994. Galectins: structure and function of a large family of animal lectins. J. Biol. Chem. 269:20807-20810.
    3. Belshe, R. B., P. M. Mendelman, J. Treanor, J. King, W. C. Gruber, P. Piedra, D. I. Bernstein, F. G. Hayden, K. Kotloff, K. Zangwill, D. Iacuzio, and M. Wolff. 1998. The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N. Engl. J. Med. 338:1405-1412.
    4. Brandt, B., T. Buchse, E. F. Abou-Eladab, M. Tiedge, E. Krause, U. Jeschke, and H. Walzel. 2008. Galectin-1 induced activation of the apoptotic death-receptor pathway in human Jurkat T lymphocytes. Histochem. Cell. Biol. 129:599-609.
    5. Caproni, E., E. Tritto, M. Cortese, A. Muzzi, F. Mosca, E. Monaci, B. Baudner, A. Seubert, and E. De Gregorio. 2012. MF59 and Pam3CSK4 boost adaptive responses to influenza subunit vaccine through an IFN type I-independent mechanism of action. J. Immunol. 188:3088-3098.
    6. Chen, Y. S., Y. C. Hung, W. H. Lin, and G. S. Huang. 2010. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology. 21:195101.
    7. Cleves, A. E., D. N. Cooper, S. H. Barondes, and R. B. Kelly. 1996. A new pathway for protein export in Saccharomyces cerevisiae. J. Cell. Biol. 133:1017-1026.
    8. Cook, D. N., M. A. Beck, T. M. Coffman, S. L. Kirby, J. F. Sheridan, I. B. Pragnell, and O. Smithies. 1995. Requirement of MIP-1 alpha for an inflammatory response to viral infection. Science. 269:1583-1585.
    9. Cooper, D., L. V. Norling, and M. Perretti. 2008. Novel insights into the inhibitory effects of galectin-1 on neutrophil recruitment under flow. J. Leukoc. Biol. 83:1459-1466.
    10. Cooper, D. N. 2002. Galectinomics: finding themes in complexity. Biochim. Biophys. Acta. 1572:209-231.
    11. Dawson, T. C., M. A. Beck, W. A. Kuziel, F. Henderson, and N. Maeda. 2000. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am. J. Pathol. 156:1951-1959.
    12. Deng, M. P., Z. H. Hu, H. L. Wang, and F. Deng. 2012. Developments of subunit and VLP vaccines against influenza a virus. Virol. Sin. 27:145-153.
    13. Dhirapong, A., A. Lleo, P. Leung, M. E. Gershwin, and F. T. Liu. 2009. The immunological potential of galectin-1 and -3. Autoimmun. Rev. 8:360-363.
    14. Di Virgilio, A. L., M. Reigosa, P. M. Arnal, and M. Fernandez Lorenzo de Mele. 2010. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. J. Hazard. Mater. 177:711-718.
    15. Dupuis, M., T. J. Murphy, D. Higgins, M. Ugozzoli, G. van Nest, G. Ott, and D. M. McDonald. 1998. Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell. Immunol. 186:18-27.
    16. Fifis, T., A. Gamvrellis, B. Crimeen-Irwin, G. A. Pietersz, J. Li, P. L. Mottram, I. F. C. McKenzie, and M. Plebanski. 2004. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173:3148-3154.
    17. Fulcher, J. A., M. H. Chang, S. Wang, T. Almazan, S. T. Hashimi, A. U. Eriksson, X. Wen, M. Pang, L. G. Baum, R. R. Singh, and B. Lee. 2009. Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling. J. Biol. Chem. 284:26860-26870.
    18. Fulcher, J. A., S. T. Hashimi, E. L. Levroney, M. Pang, K. B. Gurney, L. G. Baum, and B. Lee. 2006. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol. 177:216-226.
    19. Gasparini, R., D. Amicizia, P. L. Lai, and D. Panatto. 2011. Live attenuated influenza vaccine--a review. J. Prev. Med. Hyg. 52:95-101.
    20. Hirabayashi, J., and K. Kasai. 1993. The family of metazoan metal-independent beta-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology. 3:297-304.
    21. Huang, Y. J. S., A. L., S. Y. C. Chen, Y. L., C. R. Wang, C. Y. Tsai, M. Y. Chang, Y. T. Li, C. H. Leu, and C. L. Wu. 2012. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur. Cell. Mater. 23:170-181.
    22. Humphreys, I. R., L. Edwards, R. J. Snelgrove, A. J. Rae, A. J. Coyle, and T. Hussell. 2006. A critical role for ICOS co-stimulation in immune containment of pulmonary influenza virus infection. Eur. J. Immunol. 36:2928-2938.
    23. Humphreys, I. R., G. Walzl, L. Edwards, A. Rae, S. Hill, and T. Hussell. 2003. A critical role for OX40 in T cell-mediated immunopathology during lung viral infection. J. Exp. Med. 198:1237-1242.
    24. Ilarregui, J. M., D. O. Croci, G. A. Bianco, M. A. Toscano, M. Salatino, M. E. Vermeulen, J. R. Geffner, and G. A. Rabinovich. 2009. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10:981-991.
    25. Kaech, S. M., E. J. Wherry, and R. Ahmed. 2002. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2:251-262.
    26. Kang, S. M., J. M. Song, and R. W. Compans. 2011. Novel vaccines against influenza viruses. Virus Res. 162:31-38.
    27. Kobasa, D., S. M. Jones, K. Shinya, J. C. Kash, J. Copps, H. Ebihara, Y. Hatta, J. H. Kim, P. Halfmann, M. Hatta, F. Feldmann, J. B. Alimonti, L. Fernando, Y. Li, M. G. Katze, H. Feldmann, and Y. Kawaoka. 2007. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature. 445:319-323.
    28. Kuhweide, R., J. Van Damme, and J. L. Ceuppens. 1990. Tumor necrosis factor-alpha and interleukin 6 synergistically induce T cell growth. Eur. J. Immunol. 20:1019-1025.
    29. Levroney, E. L., H. C. Aguilar, J. A. Fulcher, L. Kohatsu, K. E. Pace, M. Pang, K. B. Gurney, L. G. Baum, and B. Lee. 2005. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. J. Immunol. 175:413-420.
    30. Liu, L., B. E. Rich, J. Inobe, W. Chen, and H. L. Weiner. 1998. Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int. Immunol. 10:1017-1026.
    31. Luo, M. 2012. Influenza virus entry. Adv. Exp. Med. Biol. 726:201-221.
    32. Marichal, T., K. Ohata, D. Bedoret, C. Mesnil, C. Sabatel, K. Kobiyama, P. Lekeux, C. Coban, S. Akira, K. J. Ishii, F. Bureau, and C. J. Desmet. 2011. DNA released from dying host cells mediates aluminum adjuvant activity. Nature medicine 17:996-1002.
    33. Mercier, S., C. St-Pierre, I. Pelletier, M. Ouellet, M. J. Tremblay, and S. Sato. 2008. Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology. 371:121-129.
    34. Muccioli, M., M. Pate, O. Omosebi, and F. Benencia. 2011. Generation and labeling of murine bone marrow-derived dendritic cells with Qdot nanocrystals for tracking studies. J. Vis. Exp.
    35. Nakayama, T. 2011. Influenza vaccine and adjuvant. Yakugaku Zasshi. 131:1723-1731.
    36. Nam, J. M., C. S. Thaxton, and C. A. Mirkin. 2003. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301:1884-1886.
    37. Ouellet, M., S. Mercier, I. Pelletier, S. Bounou, J. Roy, J. Hirabayashi, S. Sato, and M. J. Tremblay. 2005. Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J. Immunol. 174:4120-4126.
    38. Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent. 2007. Size-dependent cytotoxicity of gold nanoparticles. Small. 3:1941-1949.
    39. Perone, M. J., A. T. Larregina, W. J. Shufesky, G. D. Papworth, M. L. Sullivan, A. F. Zahorchak, D. B. Stolz, L. G. Baum, S. C. Watkins, A. W. Thomson, and A. E. Morelli. 2006. Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naive and activated T cells. J. Immunol. 176:7207-7220.
    40. Rivino, L. 2007. Dissecting the human CD4+ T cell memory pool.
    41. Rosi, N. L., D. A. Giljohann, C. S. Thaxton, A. K. Lytton-Jean, M. S. Han, and C. A. Mirkin. 2006. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 312:1027-1030.
    42. Stowell, S. R., C. M. Arthur, M. Dias-Baruffi, L. C. Rodrigues, J. P. Gourdine, J. Heimburg-Molinaro, T. Ju, R. J. Molinaro, C. Rivera-Marrero, B. Xia, D. F. Smith, and R. D. Cummings. 2010. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16:295-301.
    43. Stowell, S. R., Y. Qian, S. Karmakar, N. S. Koyama, M. Dias-Baruffi, H. Leffler, R. P. McEver, and R. D. Cummings. 2008. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180:3091-3102.
    44. Subbarao, K., and T. Joseph. 2007. Scientific barriers to developing vaccines against avian influenza viruses. Nat. Rev. Immunol. 7:267-278.
    45. Sullivan, S. P., D. G. Koutsonanos, M. Del Pilar Martin, J. W. Lee, V. Zarnitsyn, S. O. Choi, N. Murthy, R. W. Compans, I. Skountzou, and M. R. Prausnitz. 2010. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16:915-920.
    46. Summerfield, A., and K. C. McCullough. 2009. The porcine dendritic cell family. Dev. Comp. Immunol. 33:299-309.
    47. Takeuchi, K., and R. A. Lamb. 1994. Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J. Virol. 68:911-919.
    48. Than, N. G., O. Erez, D. E. Wildman, A. L. Tarca, S. S. Edwin, A. Abbas, J. Hotra, J. P. Kusanovic, F. Gotsch, S. S. Hassan, J. Espinoza, Z. Papp, and R. Romero. 2008. Severe preeclampsia is characterized by increased placental expression of galectin-1. J. Matern. Fetal. Neonatal. Med. 21:429-442.
    49. Than, N. G., R. Romero, C. J. Kim, M. R. McGowen, Z. Papp, and D. E. Wildman. 2012. Galectins: guardians of eutherian pregnancy at the maternal-fetal interface. Trends. Endocrinol. Metab. 23:23-31.
    50. Toellner, K. M., S. A. Luther, D. M. Sze, R. K. Choy, D. R. Taylor, I. C. MacLennan, and H. Acha-Orbea. 1998. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J. Exp. Med. 187:1193-1204.
    51. Utsunomiya, H., M. Ichinose, K. Tsujimoto, Y. Katsuyama, H. Yamasaki, A. H. Koyama, D. Ejima, and T. Arakawa. 2009. Co-operative thermal inactivation of herpes simplex virus and influenza virus by arginine and NaCl. Int. J. Pharm. 366:99-102.
    52. Wu, Y., W. Wei, M. Zhou, Y. Wang, J. Wu, G. Ma, and Z. Su. 2012. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomaterials. 33:2351-2360.
    53. Yang, M. L., Y. H. Chen, Y. C. Huang, C. H. Lu, Y. L. Chen, C. L. Wu, and A. L. Shiau. A new particle-based inhibitor for broad-spectrum influenza A viruses. (in preparation).
    54. Yang, M. L., Y. H. Chen, S. W. Wang, Y. J. Huang, C. H. Leu, N. C. Yeh, C. Y. Chu, C. C. Lin, G. S. Shieh, Y. L. Chen, J. R. Wang, C. H. Wang, C. L. Wu, and A. L. Shiau. 2011. Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J. Virol. 85:10010-10020.
    55. Zhang, C., B. Wang, and M. Wang. 2011. GM-CSF and IL-2 as adjuvant enhance the immune effect of protein vaccine against foot-and-mouth disease. Virol. J. 8:7.
    56. Zhou, Q., and R. D. Cummings. 1993. L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch. Biochem. Biophys. 300:6-17.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE