簡易檢索 / 詳目顯示

研究生: 劉卜慈
Liu, Pu-Ste
論文名稱: Eps8-IRSp53交互作用參與在v-Src所誘導的細胞轉型中
The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2008
畢業學年度: 98
語文別: 英文
論文頁數: 94
中文關鍵詞: v-Src誘導細胞轉型細胞移動
外文關鍵詞: Eps8, v-Src, IRSp53
相關次數: 點閱:141下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 之前研究已證實Eps8為一種致癌蛋白並且參與在癌症形成和v-Src誘導細胞轉型中。為了進一步分析Eps8是如何參與在癌化的作用機轉,利用yeast two-hybrid的系統從腦 cDNA資料庫找出和Eps8 N端的結合蛋白質IRSp53/BAIAP2。IRSp53是一種和肌動蛋白絲形成的相關蛋白並且參與在細胞移動過程中。這兩種蛋白相互作用是經由透過 Eps8 proline-rich區域和IRSp53的SH3-WWB domain結合。並且也觀察到在IV5細胞 (v-Src transformed cells)中,Eps8可以調控IRSp53的表達。因此本研究中,我們進一步探討Eps8-IRSp53的結合是如何參與在v-Src所誘導細胞轉型作用中。首先觀察到當IV5細胞中降低IRSp53的蛋白表現量時,不論在培養皿,或在軟瓊脂和老鼠皮下,都會明顯抑制細胞的生長。並且,當IRSp53S再送入IRSp53低表現量的IV5 細胞中,細胞生長缺失會回復過來;但外送進缺乏和Eps8結合的△363或PPPDA mutant於IRSp53 低表現量的 IV5細胞中,細胞生長缺失不會回復過來。進一步分析Eps8-IRSp53參與的分子機轉,也觀察到降低IRSp53表達會造成v-Src調控Stat3酪胺酸705的磷酸化有下降的情形以及PI3K的不活化(反應在下游Akt絲胺酸473的磷酸化下降) 。同時,cyclin D1和FAK蛋白的表現量降低,導致G1期細胞週期的積累,最終造成v-Src促進細胞生長能力降低。並且,當細胞大量表達IRSp53S 於Eps8低表現量的IV5 細胞中,也會使得細胞生長回復過來;但外送進△363或PPDA mutant,細胞生長缺失並不會回復過來。進一步觀察在HeLa細胞中,當EGF刺激之下促進Src活化時可以增加Eps8-IRSp53的結合和Stat3活化。因此我們的實驗結果顯示IRSp53和Eps8不僅能影響細胞的移動,而且IRSp53會和Eps8結合共同參與在v-Src所誘導的細胞轉型中。

    As an oncoprotein, Eps8 participates in v-Src-induced cellular transformation. To delineate the underlying mechanism, we perform a yeast two-hybrid screening from human brain cDNA library and IRSp53S, a protein critical in cell mobilization, was identified. The interaction domains of was identified at the multiple proline-rich regions of Eps8 and the C-terminal SH3-WWB containing sequence of IRSp53S. In addition, Eps8 knockdown decreases the expression of IRSp53 in v-Src-transformed cells (IV5), raising the question of whether Eps8-IRSp53 interaction was crucial in Src-mediated transformation. Indeed, attenuation of IRSp53 reduced anchorage dependent and independent growth in IV5 cells and tumor formation in mice, which could be partly rescued by siRNA-resistant human IRSp53S but not by the Eps8-binding defective mutants (i.e. 363 and PPPDA). Accompanying with decreased cell proliferation, Src-mediated activation of PI3K (as reflected by Pi-Ser473 AKT), Stat3 (as reflected by Pi-Tyr705 Stat3), and expression of cyclin D1 and FAK was abolished in IRSp53-attenuated IV5 cells. Consistently, G1-phase cell cycle progression was retarded in these cells. Furthermore, the interaction between Eps8 and IRSp53 was abolished by Src family kinase inhibitor SU6656. Remarkably, through activation of Src, EGF increased the formation of Eps8/IRSp53 complex and Stat3 activation in HeLa cells. With these results, we demonstrate for the first time that IRSp53, through its interaction with Eps8, not only affects cell migration but also dictates cellular growth in cancer cells.

    Abstract in Chinese..........................................7 Abstract in English……………………………………………………….9 Acknowledgement…………………………………………………………...5 Abbreviation………………………………………………………………....6 Figure………………………………………………………………………..55 Table…………………………………………………………………………50 Appendix……………………………………………………………………85 I: introduction…………………………………………………………10 1. Src…………………………………………………………………….10 2. Eps8……………………………………………………………….13 3. IRSp53……………………………………………………………….14 II. Specific aim……………………………………………………………...18 III: Material and Experimental procedures……………………………...19 IV: Results…………………………………………………………………..25 V: Discussion………………………………………………………………..33 VI: Conclusion……………………………………………………………...39 VII: Prospects………………………………………………………………40 VIII: References…………………………………………………………….43 IX: Publication……………………………………………………………..93 X: Curriculum Vitae……………………………………………………….94

    Abbott MA, (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19, 7300-7308.

    Aitio O, Hellman M, Kesti T, Kleino L, Samuilova O, Paakkonen K et al. (2008). Structural basis of PxxDY motif recognition in SH3 binding. J Mol Biol 382: 167-178.

    Aligayer H, Boyd DD, Heiss MM. (2002). Activation of Src kinase in primary
    colorectal carcinoma: an indicator of poor clinical prognosis. Cancer 94: 344–351.

    Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L et al. (2000). SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20: 9018-9027.

    Bowman T, Broome MA, Sinibaldi D, Wharton W, Pledger WJ, Sedivy JM et al. (2001). Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci USA 98: 7319-7324.

    Biesova Z, Piccoli C, Wong, WT. (1997) Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233-241.

    Calalb MB, Polte TR, Hanks SK. (1995) Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15, 954-963.

    Calalb MB, Zhang X, Polte TR, Hanks, SK. (1996) Focal adhesion kinase Tyrosine-861 is a major site of phosphorylation by Src. Biochem Biophys Res Commun 228, 662-668.

    Chen YJ, Shen MR, Chen YJ, Maa MC, Leu TH. (2008) Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther 7, 1376-1385.

    Choi J, Ko J, Racz B, Burette A, Lee JR et al. (2005) Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J Neurosci 25, 869–879.

    Disanza A, Carlier MF, Stradal TE, et al. (2004) Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature Cell Biol 6, 1180-1188.

    Disanza A, Mantoani S, Hertzog M, Gerboth S, Frittoli E, et al. (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol., 8(12), 1337-47.

    Dohn MR, Brown MV, Reynolds AB. (2009). An essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth. J Cell Biol 184, 437–450.

    Fiore PP, Ciliberto A, Stradal TE, Scita G. (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol. 8(12), 1337-47.

    Fizazi K (2007) The role of Src in prostate cancer. Annals of Oncology 18, 1765–1773.

    Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T, Miki H. (2004) IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 64, 5237-5244.

    Gallo R, Provenzano C, Carbone R, Di Fiore, PP, Castellani L, Falcone G, and Alema S. (1997) Regulation of the tyrosine kinase substrate Eps8 expression by growth factor, v-Src and terminal differentiation. Oncogene 15, 1929-1936.

    Cao X, Tay A, Guy GR, Tan YH. (1996 ) Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol Cell Biol. 16(4):1595-603.

    Govind S, Kozma R, Monfries C, Lim L, and Ahmed S. (2001) Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filaments actin. J. Cell Biol. 152, 579–594.

    Giorgio S, Stefano C, Pekka L,and Shiro S.(2007) IRSp53: crossing the road of membrane actin dynamics in the formation of membrane protrusions. Trends in Cell Biology, 18, 52-60.

    Hardlow E, Lane D. (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Homsi J, Cubitt C, Daud A. (2007) The Src signaling pathway: a potential target in melanoma and other malignancies. Expert Opin. Ther. Targets 11(1), 91-100.

    Karlsson T, Welsh M. (1997 ) Modulation of Src homology 3 proteins by the proline-rich adaptor protein Shb. Exp Cell Res. 15, 269-75.

    Kim LC, Song L, Haura EB. (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 6(10), 587-95.

    Kurenova E, Xu LH, Yang X, Baldwin AS Jr, Craven RJ, Hanks SK et al. (2004). Focal adhesion kinase suppresses apoptosis by binding to the death domain of receptor-interacting protein. Mol Cell Biol 24: 4361-4371.

    Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G et al.(2000) The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374-377.

    Lee SH, Kerff F, Chereau D, Ferron F, Klug A, and Dominguez R. (2007) Structural basis for actin-binding function of missing-in-metastasis. Structure 15, 145-155.

    Irby RB, Mao W, Coppola D, Kang J, Loubeau JM et al. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat Genet 21, 187-190.

    Leu TH, Maa MC. (2002) Tyr-863 phosphorylation enhances focal adhesion kinase autophosphorylation at Tyr-397. Oncogene 21, 6992-7000.

    Leu TH, Yeh HH, Huang CC, Chuang YC, Su SL, Maa MC. (2004) Participation of p97Eps8 in Src-mediated transformation. J Biol Chem 279, 9875-9881.

    Maa MC, Lai JR, Lin RW, and Leu TH. (1998) Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta 1450, 341-351.

    Maa MC, Hsieh CY, Leu TH. (2001) Overexpression of p97Eps8 leads to cellular transformation: implication of pleckstrin homology domain in p97Eps8-mediated ERK activation. Oncogene 20,106-112.

    Maa MC, Lee JC, Chen YJ, Chen YJ, Lee YC, Wang ST, Huang CC, Chow NH, and Leu TH. (2007) Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. J Biol Chem 282, 19399-19409.

    Maa MC and Leu TH. (1998) Vanadate-dependent FAK activation is accomplished by the sustained FAK Tyr-576/577 phosphorylation. Biochem Biophy Res Commun 251, 344-349.

    McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. (2005) The role offocal-adhesion kinase in cancer—A new therapeutic opportunity. Nat Rev Cancer 5:505–515.

    Martin GS. (2001). Timeline: the hunting of the Src. Nat Rev Mol Cell Biol 2: 467-475.

    Marcello G. (2010). Src signaling in cancer invasion. J. Cell. Physiol. 223: 14–26.

    Margaret C.F. (2004). Newest finding on the oldest oncogene; how activated src does it. Journal of Cell Science 117: 989-998.

    Mongiovi AM, Romaon PR, Panni S, Mendoza M, Wong WT, Musacchio A, Cesareni G, and Di Fiore PP. (1999). A novel peptide-SH3 interaction. EMBO J 18: 5300-5309.

    Matoskova B, Wong WT, Salcini AE, Pelicci PG, Di Fiore PP. (1995). Constitutive phosphorylation of Eps8 in tumor cell lines: relevance to malignant transformation. Mol Cell Biol 15:3805–3812.

    Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, and Lappalainen P. (2007). Missing-in-metastasis and IRSp53 deform PIP2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 7: 953-964.

    Matoskova B, Wong WT, Nomura N, Robbins KC, Di Fiore PP. (1996). RN-tre specifically binds to the SH3 domain of eps8 with high affinity and confers growth advantage to NIH3T3 upon carboxy-terminal truncation. Oncogene 12: 2679-2688.

    Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ et al. (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J. 24: 240-250.

    Miyahara, A., Okamura-Oho, Y., Miyahita, T., Hoshika, A., and Yamada, M. (2003) Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. J Hum Genet 48, 410-414.

    Oda K, Shiratsuchi T, Nishimori H, Inazawa J, Yoshikawa H et al. (1999) Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 interacts with the cytoplasmic domain of BAI1. Cytogenet Cell Genet 84, 75-82.

    Okamura-Oho Y, Miyashita T, Ohmi K, Yamada M. (1999) Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Hum Mol Genet 8, 947-957.

    Okamura-Oho Y, Miyashita T, Yamada M. (2001) Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochem Biophys Res Commun 289, 957-960.

    Playford MP, Schaller MD. (2004) The interplay between Src and integrins in normal and tumor biology. Oncogene 23:7928–7946.

    Rous P. (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13, 397–411.

    Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynold AB, Parsons JT. (1992) pp125FAK a structurally dinstinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci USA 89, 5192-5196.

    Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. (1994) Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372, 786-791.

    Schlaepfer DD, Hunter T. (1996) Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kiases. Mol Cell Biol 16, 5623-5633.

    Scita G, Confalonieri S, Lappalainen P, Suetsugu S. (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18, 52-60.

    Scita G, Nordstrom J, Carbone R, Tenca P, Giardina G, Gutkind S, Bjarnegård M, Betsholtz C, Di Fiore PP (1999) EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290-293.

    Summy JM, Gallick GE. (2003) Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 22(4), 337-58.

    Silva CM. (2004) Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigensis. Oncogene 23: 8017-8023.

    Ahmed S, Goh WI, Bu W. (2009) I-BAR domains, IRSp53 and filopodium formation. Semin Cell Dev Biol., 21(4), 350-6.

    Suetsugu S, Murayama K, Sakamoto A, Hanawa-Suetsugu K, Seto A, Oikawa T, Mishima C, Shirouzu M, Takenawa T, and Yokoyama S. (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 46, 35347-35358.

    Talamonti MS, Roh MS, Curley SA. (1993) Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J Clin Invest 91: 53–60.

    Termuhlen PM, Curley SA, Talamonti MS. (1993). Site-specific differences in
    pp60c-src activity in human colorectal metastases. J Surg Res 54:293–298.

    Yamagishi A, Masuda M, Ohki T, Onishi H, Mochizuki N. (2004) A novel actin bundling/filopodium formingdomain conserved in insulin receptor tyrosine kinase substrate p53and missing in metastasis protein. J Biol Chem. 279, 14929–14936.

    Yeh TC, Ogawa W, Danielsen AG, Roth RA. (1996) Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J Biol Chem. 271, 2921-2928.

    無法下載圖示 校內:2020-10-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE