研究生: |
葉舜至 Yeh, Shun-Chih |
---|---|
論文名稱: |
使用高介電常數材料之絕緣層製作可低電壓操作的有機薄膜電晶體 Low-voltage operated organic thin-film transistors with high-k gate dielectrics |
指導教授: |
周維揚
Chou, Wei-Yang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 有機薄膜電晶體 、聚亞醯胺 、五環素 、光配向 、氧化鉿 |
外文關鍵詞: | thin-film transistors, photoaligned polyimide, pentacene, Hafnium oxide |
相關次數: | 點閱:77 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以氧化鉿(HfOx)作為有機薄膜電晶體絕緣層,具光配向的聚亞醯胺(Photoaligned Polyimide, PA- PI)為元件修飾層,藉由氧化鉿的高介電常數特性與PA-PI的非極性表面特性來製作可低電壓操作之五環素(pentacene)薄膜電晶體,並進一步研究以線性偏極化UV光照射PA-PI表面使其產生光裂解(photo-degradation)後,五環素分子成長情形與電晶體的特性。
實驗結果發現,氧化鉿在加上PA-PI修飾層後,電晶體的漏電流成功降低了兩個數量級,在1 MV/cm下操作只有10-8 ~ 10-9 A/cm2,且電容值為26.41 nF/cm2,成功製作出臨界電壓只有-1.63 V的五環素薄膜電晶體。在原子力顯微鏡、X-ray光譜、拉曼光譜之分析中,顯示了氧化鉿電晶體加了PA-PI後,五環素薄膜之表面約有1 m的晶粒大小與樹枝狀的表面形態,內部堆疊有較好的結晶程度與結晶區域大小,以及堆疊較為緊密,而再組織能也較低。
另一方面,實驗發現PA-PI經過偏極化UV曝光後,五環素分子會沿著垂直UV偏極化方向排列成長,且電晶體通道中的載子也較易在垂直UV偏極化方向上傳輸,因此電晶體在垂直與平行UV偏極化方向上具有載子遷移率之異向性比,載子遷移率最大可差1.74倍,載子遷移率最高為0.160 cm2/Vs。透過偏振拉曼光譜分析也證實,五環素薄膜成長在曝光的PA-PI表面上時,在垂直UV偏極化方向上的分子間作用力較強。此外,還發現電晶體的臨界電壓會隨著PA-PI曝光量而有所變化,且在電容量測中,平帶電壓也有相同的變化,可知電晶體的臨界電壓可藉由PA-PI的曝光量來控制。因此,我們不只成功製作出可低電壓操作的有機薄膜電晶體,還成功研究出具有載子遷移率的異向性與可控的臨界電壓之有機薄膜電晶體。
In this study, pentacene-based thin-film transistors (TFTs) operated at low voltage have been realized by employing hybrid dielectrics, photoaligned polyimide (PA-PI)-capped high-k hafnium oxide (HfOx). The PA-PI layer plays a role in modifying the surface characteristic of the HfOx layer. While a PA-PI film was coated onto HfOx, the leakage current density dropped more than two orders of magnitude to 10-9 A/cm2 at 1 MV/cm; therefore, the pentacene-based TFTs exhibited high performance operated at low voltage. Furthermore, the PA-PI films were irradiated with linearly polarized UV beams at various doses. The grain growths of the pentacene film were perpendicularly oriented to the polarized direction of the UV irradiation on the PA-PI layer. The mobility anisotropic ratios, which are defined as the drain current flows parallel or perpendicular to the orientation of the pentacene films, were obtained. The maximum anisotropic ratio was 1.74. Interestingly, we have demonstrated a tunable threshold voltage and flatband voltage of OTFTs by controlling the dose of UV light.
[1] C. K. Chiang, et al., "Electrical-Conductivity in Doped Polyacetylene," Physical Review Letters, vol. 39, pp. 1098-1101, 1977.
[2] K. H. Lee, et al., "Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at-5V," Organic Electronics, vol. 10, pp. 194-198, Feb 2009.
[3] M. F. Chang, et al., "Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric," Ieee Electron Device Letters, vol. 30, pp. 133-135, Feb 2009.
[4] L. S. Zhou, et al., "All-organic active matrix flexible display," Applied Physics Letters, vol. 88, pp. 83502-083502, Feb 20 2006.
[5] B. Crone, et al., "Electronic sensing of vapors with organic transistors," Applied Physics Letters, vol. 78, pp. 2229-2231, Apr 9 2001.
[6] I. Graz, et al., "Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones," Applied Physics Letters, vol. 89, pp. 1077-3118, Aug 14 2006.
[7] M. Zirkl, et al., "Low-voltage organic thin-film transistors with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors," Advanced Materials, vol. 19, pp. 2241-2245, Sep 3 2007.
[8] P. F. Baude, et al., "Pentacene-based radio-frequency identification circuitry," Applied Physics Letters, vol. 82, pp. 3964-3966, Jun 2 2003.
[9] M. Maccioni, et al., "Towards the textile transistor: Assembly and characterization of an organic field effect transistor with a cylindrical geometry," Applied Physics Letters, vol. 89,pp. 143515-143517, Oct 2 2006.
[10] C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Advanced Materials, vol. 14, pp. 11-27, Jan 16 2002.
[11] W.-Y. Chou and C.-W. Kuo, "Tuning surface properties in photosensitive polyimide. Material design for high performance organic thin-film transistors," Journal of Materials Chemistry, 2010.(un published)
[12] M. J. Panzer, et al., "Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric," Applied Physics Letters, vol. 86,pp.103503-103505, Mar 7 2005.
[13] C. D. Dimitrakopoulos, et al., "Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators," Science, vol. 283, pp. 822-824, Feb 1999.
[14] M. Halik, et al., "Low-voltage organic transistors with an amorphous molecular gate dielectric," Nature, vol. 431, pp. 963-966, Oct 21 2004.
[15] H. Ma, et al., "Low-voltage organic thin-film transistors with pi-sigma-phosphonic acid molecular dielectric monolayers," Applied Physics Letters, vol. 92,pp.113303-113305, Mar 17 2008.
[16] C. S. Kim, et al., "High-k and low-k nanocomposite gate dielectrics for low voltage organic thin film transistors," Applied Physics Letters, vol. 88,pp.243515-243517, Jun 12 2006.
[17] D. K. Hwang, et al., "Low-voltage high-mobility pentacene thin-film transistors with polymer/high-k oxide double gate dielectrics," Applied Physics Letters, vol. 88,pp.243513-243515, Jun 12 2006.
[18] A. Facchetti, et al., "Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics," Advanced Materials, vol. 17, pp. 1705-1725, Jul 18 2005.
[19] C. D. Dimitrakopoulos, et al., "Low-voltage, high-mobility pentacene transistors with solution-processed high dielectric constant insulators," Advanced Materials, vol. 11, pp. 1372-1375, Nov 1999.
[20] J. Tate, et al., "Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low-voltage electronic systems with organic active components," Langmuir, vol. 16, pp. 6054-6060, Jul 11 2000.
[21] C. Bartic, et al., "Monitoring pH with organic-based field-effect transistors," Sensors and Actuators B-Chemical, vol. 83, pp. 115-122, Mar 15 2002.
[22] W. H. Ha, et al., "Electrical properties of Al2O3 film deposited at low temperatures," Journal of Non-Crystalline Solids, vol. 303, pp. 78-82, May 1 2002.
[23] J. Lee, et al., "Pentacene thin-film transistors with Al2O3+x gate dielectric films deposited on indium-tin-oxide glass," Applied Physics Letters, vol. 83, pp. 2689-2691, Sep 29 2003.
[24] R. Schroeder, et al., "A study of the threshold voltage in pentacene organic field-effect transistors," Applied Physics Letters, vol. 83, pp. 3201-3203, Oct 13 2003.
[25] Y. Iino, et al., "Organic thin-film transistors on a plastic substrate with anodically oxidized high-dielectric-constant insulators," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 299-304, Jan 2003.
[26] G. M. Wang, et al., "Poly(3-hexylthiophene) field-effect transistors with high dielectric constant gate insulator," Journal of Applied Physics, vol. 95, pp. 316-322, Jan 1 2004.
[27] L. A. Majewski, et al., "Organic field-effect transistors with electroplated platinum contacts," Applied Physics Letters, vol. 85, pp. 3620-3622, Oct 18 2004.
[28] A. F. Stassen, et al., "Influence of the gate dielectric on the mobility of rubrene single-crystal field-effect transistors," Applied Physics Letters, vol. 85, pp. 3899-3901, Oct 25 2004.
[29] S. J. Kang, et al., "Fabrication and characterization of the pentacene thin film transistor with a Gd2O3 gate insulator," Synthetic Metals, vol. 146, pp. 351-354, Nov 3 2004.
[30] L. A. Majewski, et al., "One volt organic transistor," Advanced Materials, vol. 17, pp. 192-196, Jan 31 2005.
[31] L. E. Alexander, "X-ray Diffraction Methods in polymer science," p. 429, 1969.
[32] A. S. Davydov, "Theory of Molecular Excitons," p. 21, 1971.
[33] T. M. K. Nedungadi, "Conical refraction in naphthalene crystals," Proc. Indian Acad. Sci., vol. 15, p. 376, 1941.
[34] L. Colangeli, et al., "Raman and Infrared-Spectra of Polycyclic Aromatic Hydrocarbon Molecules of Possible Astrophysical Interest," Astrophysical Journal, vol. 396, pp. 369-377, Sep 1 1992.
[35] D. W. v. Krevelen and K. t. Nijenhuis, Eds., Properties of Polymers. 2009.
[36] X. H. Zhang, et al., "High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD)," Organic Electronics, vol. 8, pp. 718-726, Dec 2007.
[37] S. P. Tiwari, et al., "Low-voltage solution-processed n-channel organic field-effect transistors with high-k HfO2 gate dielectrics grown by atomic layer deposition," Applied Physics Letters, vol. 95,pp.223303-223305, Nov 30 2009.
[38] M. H. Zhang, et al., "Pentacene organic field-effect transistors with polymeric dielectric interfaces: Performance and stability," Organic Electronics, vol. 10, pp. 1133-1140, Sep 2009.
[39] Y. X. Lu, et al., "Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics," Applied Physics Letters, vol. 94,pp.113303-113305, Mar 16 2009.
[40] Y. Wang, et al., "Low-voltage high-performance organic thin film transistors with a thermally annealed polystyrene/hafnium oxide dielectric," Applied Physics Letters, vol. 95,pp.243302-243304, Dec 14 2009.
[41] K. Fukuda, et al., "Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics," Applied Physics Letters, vol. 96,pp.053302-053304, Feb 1 2010.
[42] T. H. Huang, et al., "Temperature-dependent ultra-thin polymer layer for low voltage organic thin-film transistors," Organic Electronics, vol. 11, pp. 618-625, Apr 2010.
[43] S. S. Cheng, et al., "Pentacene thin-film transistor with PVP-capped high-k MgO dielectric grown by reactive evaporation," Electrochemical and Solid State Letters, vol. 11, pp. H118-H120, 2008.
[44] S. J. Jo, et al., "Surface property controllable multilayered gate dielectric for low voltage organic thin film transistors," Applied Physics Letters, vol. 93,pp.083504-083506, Aug 25 2008.
[45] L. F. Drummy and D. C. Martin, "Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films," Advanced Materials, vol. 17, pp. 903-907, Apr 4 2005.
[46] D. A. Neamen, "半導體物理與元件," vol. 1, p. 503, 2005.
[47] A. Wang, et al., "Tunable threshold voltage and flatband voltage in pentacene field effect transistors," Applied Physics Letters, vol. 89,pp.112109-112111, Sep 11 2006.