簡易檢索 / 詳目顯示

研究生: 陳冠忠
Chen, Kuan-Chung
論文名稱: 探究台灣營建鋼鐵產品的碳足跡基線:多區域投入產出複合生命週期評估方法
Investigating the Carbon Footprint Baseline of Construction Steel Products in Taiwan: a Multi-Region Input-Output Hybrid Life Cycle Assessment Approach
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 多區域投入產出分析鋼鐵產品碳足跡矩陣擴增高爐鋼胚和電爐鋼胚碳足跡分析
外文關鍵詞: multi-regional input-output analysis, carbon footprint of steel products, matrix augmentation, carbon footprint analysis of blast furnace billet and electric arc furnace billet
相關次數: 點閱:93下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2021年第26屆聯合國氣候變遷大會 (Conference of the Parties 26, COP26)中,197個與會國家為減緩氣候變遷之影響,共同通過《格拉斯哥氣候公約》,於2022年國發會正式公布「臺灣2050淨零排放路徑及策略總說明」,提供至2050年淨零之軌跡與行動路徑,就能源、產業、生活轉型政策預期增長的重要領域制定行動計畫,落實淨零轉型目標。依據環保署事業溫室氣體排放量資訊平台的資料顯示,民國110年對289家廠商進行的盤查登錄及查證作業中結果顯示,其中電力業的排放量佔總排放的54.3%,其次則為鋼鐵業佔13.81%的排放量。為實現2050年淨零排放的目標,本研究詳細地針對鋼鐵產品進行碳足跡分析。本研究之目的為利用多區域投入產出複合生命週期分析建立台灣地區鋼鐵產品之碳足跡基線。將我國105年產業關聯表,利用工業產銷存動態調查資料及鋼鐵公會資訊針對鋼鐵部門進行矩陣擴增,並引用能源局公告之能源平衡資料及環保署之能源燃燒排放資料,結合Eora國際資料庫計算出鋼鐵產品之碳係數,最後利用鋼鐵產品平均價格計算出不同種類鋼鐵產品之碳足跡。結果顯示,邊界涵蓋到國內之碳足跡數據與環保署之數據比較誤差約在10%上下,而邊界涵蓋到國外之碳足跡數值則比單純計算邊界為國內之碳足跡數值增加約3到4成。

    During the 26th United Nations Climate Change Conference held in 2021, 197 participating countries jointly adopted the "Glasgow Climate Convention" to mitigate the impacts of climate change. In 2022, Taiwan's Environmental Protection Administration officially announced the "Taiwan 2050 Net Zero Emission Pathway and Strategy," outlining a trajectory and action plan towards achieving net-zero emissions by 2050. This plan focuses on key areas like energy, industry, and lifestyle transformation. According to data from Taiwan's Environmental Protection Administration's greenhouse gas emissions platform, an assessment of 289 companies in 2021 indicated that the power sector accounted for 54.3% of total emissions, followed by the steel industry at 13.81%. To achieve the 2050 net-zero emission goal, this study conducted a comprehensive carbon footprint analysis on the steel industry. By utilizing multi-regional input-output analysis, industrial production-sales data, and steel association information, a carbon footprint baseline for Taiwanese steel products was established. The study incorporated energy balance data from the Bureau of Energy and emission data from the Environmental Protection Administration, and integrated Eora international database to calculate carbon coefficients for steel products. The results revealed that comparing domestically covered carbon footprint data with data from the Environmental Protection Administration showed an error of about 10%. Additionally, expanding the boundary to include foreign carbon footprint data increased the values by approximately 30% to 40% compared to solely domestic boundary calculations.

    摘要 i ABSTRACT ii 誌謝 viii 目錄 ix 表目錄 xiii 圖目錄 xv 1 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究方法與流程 4 2 第二章 文獻回顧 6 2.1 生命週期評估與產品碳足跡 6 2.1.1 生命週期評估國際標準 6 2.1.2 產品碳足跡國際標準 8 2.2 生命週期評估方法 11 2.2.1 製程盤查分析(Process-Based Analysis) 13 2.2.2 投入產出分析(Input-Output Analysis) 13 2.2.3 多區域投入產出分析(Multi-Region Input Output Analysis) 14 2.3 鋼鐵製程與產品 16 2.3.1 鋼鐵製造程序 16 2.3.2 鋼鐵產品分類 19 2.3.3 影響鋼鐵產品碳係數之因素 28 2.4 鋼鐵產品生命週期分析與碳足跡 30 2.4.1 基於製程盤查分析之鋼鐵產業生命週期評估(PB LCI) 30 2.4.2 基於投入產出分析之鋼鐵產業生命週期評估(IO LCI) 31 2.4.3 基於複合投入產出分析之鋼鐵產業生命週期評估(Hybrid IO LCI) 32 3 第三章 研究方法 33 3.1 評估邊界與流程 33 3.1.1 評估邊界 33 3.1.2 評估流程 34 3.2 評估分析資料來源 35 3.2.1 台灣相關經濟數據 35 3.2.2 國際相關經濟數據 38 3.2.3 能源數據 39 3.2.4 排放數據 42 3.3 多區域投入產出複合分析 43 3.3.1 中間需求表矩陣整合 43 3.3.2 最終需求表矩陣拆解 44 3.3.3 投入產出矩陣架構及計算 46 3.4 產業關聯表擴增及能源平衡表分配 49 3.4.1 產業關聯表矩陣擴增 49 3.4.2 能源平衡表部門分配 50 3.4.3 其他能源資訊分配 53 4 第四章 鋼鐵產品分析 55 4.1 鋼鐵產業碳足跡 55 4.1.1 鋼鐵初級製品經濟流 55 4.1.2 鋼鐵初級製品碳排放環境流 57 4.1.3 未分配之原始產業關聯表 58 4.2 鋼鐵產品碳足跡(原始能源平衡表) 59 4.2.1 將069鋼鐵初級製品依工業產銷存比例擴增 59 4.2.2 將鋼胚及鋼鐵製品依高爐及電爐比例擴增 62 4.2.3 國產品交易表加入Eora擴增 64 4.3 鋼鐵產品碳足跡(擴增能源平衡表) 65 4.3.1 能源平衡表分配 65 4.3.2 高爐及電爐能源分配 68 4.3.3 加入鋼鐵製程排放 71 4.3.4 能源平衡表結合溫室氣體排放衛星帳戶數據 73 4.4 數據比較與分析 74 4.4.1 能源分配比較 74 4.4.2 高爐及電爐拆分比較 75 4.4.3 加入製程排放比較 76 4.4.4 使用MRIO比較 78 4.4.5 冷熱軋產品比較 79 4.4.6 碳足跡熱點分析 81 4.4.7 碳足跡數據差異分析 83 5 第五章 結論與建議 89 5.1 結論 89 5.2 建議 91 6 參考文獻 93 7 附錄一 97 8 附錄二 98 9 附錄三 99 10 附錄四 104 11 附錄五 106

    Andrew, R. M., & Peters, G. P. (2013). A multi-region input–output table based on the global trade analysis project database (GTAP-MRIO). Economic Systems Research, 25(1), 99-121.
    Arena, M., & Azzone, G. (2010). Process based approach to select key sustainability indicators for steel companies. Ironmaking & Steelmaking, 37(6), 437-444.
    Bieda, B. (2012). Life cycle inventory processes of the ArcelorMittal Poland (AMP) SA in Kraków, Poland—basic oxygen furnace steel production: a case study. The International Journal of Life Cycle Assessment, 17, 463-470.
    Bullard, C. W., Penner, P. S., & Pilati, D. A. (1978). Net energy analysis: Handbook for combining process and input-output analysis. Resources and Energy, 1(3), 267-313. https://doi.org/https://doi.org/10.1016/0165-0572(78)90008-7
    Burchart-Korol, D. (2013). Life cycle assessment of steel production in Poland: a case study. Journal of Cleaner Production, 54, 235-243.
    Cabernard, L., & Pfister, S. (2021). A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Science of the Total Environment, 755, 142587.
    Chang, Y., Ries, R. J., & Wang, Y. (2010). The embodied energy and environmental emissions of construction projects in China: An economic input–output LCA model. Energy Policy, 38(11), 6597-6603. https://doi.org/https://doi.org/10.1016/j.enpol.2010.06.030
    Choi, J., Kim, W., & Choi, S. (2022). The Economic Effect of the Steel Industry on Sustainable Growth in China—A Focus on Input–Output Analysis. Sustainability, 14(7), 4110.
    Crishna, N., Banfill, P., & Goodsir, S. (2011). Embodied energy and CO2 in UK dimension stone. Resources, Conservation and Recycling, 55(12), 1265-1273.
    Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M., & De Vries, G. (2013). The construction of world input–output tables in the WIOD project. Economic Systems Research, 25(1), 71-98.
    Faturay, F., Vunnava, V. S. G., Lenzen, M., & Singh, S. (2020). Using a new USA multi-region input output (MRIO) model for assessing economic and energy impacts of wind energy expansion in USA. Applied Energy, 261, 114141.
    Fenner, A. E., Kibert, C. J., Woo, J., Morque, S., Razkenari, M., Hakim, H., & Lu, X. (2018). The carbon footprint of buildings: A review of methodologies and applications. Renewable and Sustainable Energy Reviews, 94, 1142-1152.
    Finkbeiner, M., Inaba, A., Tan, R., Christiansen, K., & Klüppel, H.-J. (2006). The new international standards for life cycle assessment: ISO 14040 and ISO 14044. The International Journal of Life Cycle Assessment, 11, 80-85.
    Hondo, H., Sakai, S., & Tanno, S. (2002). Sensitivity analysis of total CO2 emission intensities estimated using an input–output table. Applied Energy, 72(3), 689-704. https://doi.org/https://doi.org/10.1016/S0306-2619(02)00059-4
    Huang, Z., Ding, X., Sun, H., & Liu, S. (2010). Identification of main influencing factors of life cycle CO2 emissions from the integrated steelworks using sensitivity analysis. Journal of Cleaner Production, 18(10-11), 1052-1058.
    Inomata, S., & Owen, A. (2014). Comparative evaluation of MRIO databases. In (Vol. 26, pp. 239-244): Taylor & Francis.
    IPCC. (2023). AR6. https://www.ipcc.ch/
    ISO14067. (2018). NEN-EN-ISO 14067: 2018 (en)-Greenhouse gases-Carbon footprint of products-Requirements and guidelines for quantification.
    Lam, K. L., Kenway, S. J., Lane, J. L., Islam, K. N., & de Berc, R. B. (2019). Energy intensity and embodied energy flow in Australia: An input-output analysis. Journal of Cleaner Production, 226, 357-368.
    Lave, L. B. (1995). Using input-output analysis to estimate economy-wide discharges. Environmental Science & Technology, 29(9), 420A-426A.
    Lenzen, M., & Dey, C. (2000). Truncation error in embodied energy analyses of basic iron and steel products. Energy, 25(6), 577-585.
    Lenzen, M., Geschke, A., Malik, A., Fry, J., Lane, J., Wiedmann, T., Kenway, S., Hoang, K., & Cadogan-Cowper, A. (2017). New multi-regional input–output databases for Australia–enabling timely and flexible regional analysis. Economic Systems Research, 29(2), 275-295.
    Lenzen, M., Moran, D., Kanemoto, K., & Geschke, A. (2013). Building Eora: a global multi-region input–output database at high country and sector resolution. Economic Systems Research, 25(1), 20-49.
    Leontief, W. (1986). Input-output economics. Oxford University Press.
    Li, L., Lei, Y., & Pan, D. (2016). Study of CO 2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment. Natural Hazards, 81, 957-970.
    Li, X., Sun, W., Zhao, L., & Cai, J. (2018). Material metabolism and environmental emissions of BF-BOF and EAF steel production routes. Mineral Processing and Extractive Metallurgy Review, 39(1), 50-58.
    Lin, S. J., Liu, C. H., & Lewis, C. (2012). CO2 emission multiplier effects of Taiwan’s electricity sector by input-output analysis. Aerosol and Air Quality Research, 12(2), 180-190.
    Mangır, N., & Şahin, Ü. A. (2022). An environmentally extended global multi-regional input–output analysis of consumption-based and embodied import-based carbon emissions of Turkey. Environmental Science and Pollution Research, 29(36), 54813-54826.
    Miller, R. E., & Blair, P. D. (2009). Input-output analysis: foundations and extensions. Cambridge university press.
    Nakajima, K., Ohno, H., Kondo, Y., Matsubae, K., Takeda, O., Miki, T., Nakamura, S., & Nagasaka, T. (2013). Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input–output analysis. Environmental science & technology, 47(9), 4653-4660.
    Nakamura, S., Kondo, Y., Matsubae, K., Nakajima, K., & Nagasaka, T. (2011). UPIOM: A new tool of MFA and its application to the flow of iron and steel associated with car production. Environmental science & technology, 45(3), 1114-1120.
    Norgate, T. E., Jahanshahi, S., & Rankin, W. J. (2007). Assessing the environmental impact of metal production processes. Journal of Cleaner Production, 15(8-9), 838-848.
    OECD, I. (2016). Energy and air pollution: world energy outlook special report 2016.
    Owen, A., Steen-Olsen, K., Barrett, J., Wiedmann, T., & Lenzen, M. (2014). A structural decomposition approach to comparing MRIO databases. Economic Systems Research, 26(3), 262-283.
    PAS2050. (2011). 2050-Specifi cation for the assessment of the life cycle greenhouse gas emissions of goods and services. 2011. BSI: bsigroup. com.
    Rowley, H. V., Lundie, S., & Peters, G. M. (2009). A hybrid life cycle assessment model for comparison with conventional methodologies in Australia. The International Journal of Life Cycle Assessment, 14, 508-516.
    Smith, P., Beaumont, L., Bernacchi, C. J., Byrne, M., Cheung, W., Conant, R. T., Cotrufo, F., Feng, X., Janssens, I., & Jones, H. (2022). Essential outcomes for COP26. In (Vol. 28, pp. 1-3).
    Stadler, K., Wood, R., Bulavskaya, T., Södersten, C. J., Simas, M., Schmidt, S., Usubiaga, A., Acosta‐Fernández, J., Kuenen, J., & Bruckner, M. (2018). EXIOBASE 3: Developing a time series of detailed environmentally extended multi‐regional input‐output tables. Journal of Industrial Ecology, 22(3), 502-515.
    Suh, S., & Huppes, G. (2005). Methods for life cycle inventory of a product. Journal of Cleaner Production, 13(7), 687-697.
    Teh, S. H., Wiedmann, T., & Moore, S. (2018). Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials. Journal of Economic Structures, 7, 1-25.
    Zhang, Y., Yan, D., Hu, S., & Guo, S. (2019). Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy, 134, 110949.
    Zhou, T. (2021). New physical science behind climate change: What does IPCC AR6 tell us? The Innovation, 2(4).
    中華民國工業安全衛生協會. (2016). 金屬基本工業(鋼線鋼纜業) http://www.isha.org.tw/wordpress/wp-content/uploads/2016/06/4-1.pdf
    中鋼公司. (2023). 鋼品生產流程圖. https://www.csc.com.tw/csc/pd/prs.htm
    中聯資源. (2023). 高爐及電爐流程圖. https://www.chc.com.tw/source.html
    中鴻鋼鐵. (2023). 冷軋製程. https://www.chsteel.com.tw/pr/pro_cold.html
    東和鋼鐵. (2023a). 型鋼製程. https://www.tunghosteel.com/factory/process/6
    東和鋼鐵. (2023b). 高爐及電爐煉鋼之優劣. https://www.tunghosteel.com/home/m1_qa
    東和鋼鐵. (2023c). 鋼筋製程. https://www.tunghosteel.com/factory/process/5#tabs
    財政部南區國稅局. (2022). 鋼鐵業原物料耗用通常水準. https://www.ntbsa.gov.tw/singlehtml/090f42aebcdc4785a6227b012db9951a?cntId=cb7cf9f083a343eba1622433265e27b6
    高昌興鋼鐵. (2023). 鋼管製程. http://www.khc.com.tw/index.php?option=com_content&view=article&id=89&...
    國發會. (2023). https://www.ndc.gov.tw/Default.aspx
    華新麗華. (2023a). 直棒製程. https://www.walsin.com/product/hot-rolled-bar/
    華新麗華. (2023b). 盤元製程. https://www.walsin.com/product/wire-rod/
    經濟部國際貿易局. (2021). 國際鏈結之企業碳足跡指引. https://tft.ttfapproved.org.tw/public/newsinfos/444_20211125090941_1.pdf
    環保署. (2023). 事業溫室氣體排放量資訊平台. https://ghgregistry.epa.gov.tw/epa_ghg/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE