簡易檢索 / 詳目顯示

研究生: 楊明哲
Yang, Ming-Che
論文名稱: 網印氧化鎢薄膜與無溶劑高分子電解液於光伏致變色元件之應用
Fabrication of photovoltachromic cells using screen-printed tungsten oxide and solvent-free polymer electrolyte
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 124
中文關鍵詞: 氧化鎢薄膜電致變色元件無溶劑高分子電解液光伏致變色元件
外文關鍵詞: Tungsten oxide films, Electrochromic cell, solvent free polymer electrolyte, Photovoltachromic cell
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以網印的方法網印氧化鎢薄膜,首先以過鎢酸溶液與增稠劑混合而形成氧化鎢漿料,在經用網印法印製在FTO玻璃基板上,經由電性量測,其具有良好的電致變色性質,之後將此氧化鎢薄膜應用於光伏致變色元件上。搭配網印白金而形成之氧化鎢/白金複合式電極,再以N719染料敏化二氧化鈦電極組裝而成光伏致變色元件。電解液則是使用無溶劑高分子電解液,藉由調控電解液中離子的含量來分析光伏致變色元件的光學性質與光電轉換效率之影響。其元件於照光下,短路與開路著褪色時間各為8秒與6秒;此外,於短路下,開燈與關燈著褪時間分別為8秒與81秒。而其電池效率為0.28 %,並將元件外接一可調控電阻,藉由調控電阻值可改變元件著色程度。

    Tungsten oxide films have been formed by screen-printed. First, peroxopolytungstic acid solution was mixed with a binder to form a slurry and printed on the FTO glass substrates. By the electrical measurement, tungsten oxide films show a good electrochromic properties. Afterward, this tungsten oxide film was applied to the photovoltachromic devices. To assemble the photovoltachromic devices combine screen-printed tungsten oxide/platinum composite electrode and N719 dye-sensitized titanium dioxide electrode. The solvent free polymer electrolyte was applied to photovoltachromic devices. By the adjustment of the electrolyte, the optical properties and the photoelectric conversion efficiency of the photovoltachromic devices were analyzed. Under illumination, the response time for coloring and bleaching the cell with short-circuited and open-circuited are 8 and 6s, respectively. In addition, it shows the response time for coloring and bleaching under illumination and dark are 8 and 81s. The cell’s photoelectric conversion efficiency was 0.28%, and the transmittance of the colored photovoltachromic devices was variable by adjusting the variable resistance in series with photovoltachromic devices.

    第一章 緒論…………………………………………………………………1 1-1前言…………………………………………………………………1 1-2 研究動機與目的……………………………………………………2 第二章 文獻回顧……………………………………………………………4 2-1 變色材料分類………………………………………………………4 2-1.1光致變色(Photochromic)材料………………………………4 2-1.2熱致變色(Thermochromic)材料……………………………5 2-1.3氣致變色(Gaschromic)材料…………………………………5 2-1.4電致變色(Electrochromic)材料……………………………6 2-2 電致變色材料………………………………………………………7 2-2.1 過渡金屬氧化物…………………………………………….7 2-2.2 過渡金屬氰化物……………………………………………7 2-2.3有機化合物…………………………………………………8 2-2.4聚合物………………………………………………………8 2-3 電致變色類型………………………………………………………8 2-3.1還原態著色(cathodic coloration) ……………………………8 2-3.2氧化態著色(anodic coloration) ……………………………9 2-3.3還原態/氧化態均著色(cathodic/anodic coloration) ………9 2-4氧化鎢之性質、結構與應用………………………………………9 2-4.1 不同氧化鎢形貌於電致變色元件應用…………………11 2-4.2 不同相態氧化鎢於電致變色元件應用…………………15 2-4.3 修飾氧化鎢電致變色元件………………………………20 2-4.4 電解液對氧化鎢變致變色元件的影響…………………22 2-5 電致變色性質……………………………………………………27 2-5.1 穿透度變化(transmittance modulation) …………………27 2-5.2 著色效率(coloration efficiency,CE) ……………………27 2-5.3 響應時間(response time) …………………………………28 2-5.4 可靠度(reliability) ………………………………………28 2-5.5 記憶效果(memory effect) …………………………………28 2-6 光電致變色元件…………………………………………………29 2-6.1 氧化鎢材料於光電致變色元件之應用…………………29 2-6.2 非無機氧化物於光電致變色元件之應用………………37 2-6.3 矽太陽能電池於光電致變色元件之應用………………40 2-7 電化學交流阻抗分析(electrochemical impedance spectroscopy, EIS) ………………………………………………………………44 2-7.1基本原理……………………………………………………44 2-7.2 電化學交流阻抗分析應用於染料敏化太陽能電池……48 第三章 實驗步驟與研究方法……………………………………………51 3-1實驗材料…………………………………………………………51 3-2實驗流程…………………………………………………………53 3-2實驗設備…………………………………………………………54 3-2.1手動網印機…………………………………………………54 3-2.2旋轉塗佈機…………………………………………………54 3-2.3超音波震盪器………………………………………………55 3-2.4高溫爐………………………………………………………55 3-2.5 太陽光模擬器……………………………………………56 3-2.6 單一波長入射光穿透率與響應時間……………………56 3-3實驗流程…………………………………………………………57 3-3.1電致變色元件………………………………………………57 3-3.1.1 基板的清潔…………………………………………57 3-3.1.2製備氧化鎢漿料……………………………………58 3-3.1.2製備氧化鎢薄膜……………………………………58 3-3.1.3組裝電致變色元件…………………………………58 3-3.2 光伏致變色元件…………………………………………59 3-3.2.1基板的前處理與清潔………………………………59 3-3.2.2 製備複合式氧化鎢/白金變色電極………………59 3-3.2.3 製備二氧化鈦光電極………………………………60 3-3.2.3 無溶劑高分子電解液製作…………………………60 3-3.2.4組裝光伏致變色元件………………………………61 3-4 分析儀器…………………………………………………………61 3-4.1掃描式電子顯微鏡(Scanning Electron Microscope,SEM)..61 3-4.2 X光繞射分析儀(X-ray Diffraction,XRD) ………………62 3-4.3拉曼分析儀(Raman Spectroscopy) ………………………63 3-4.4 恆電位儀(Potentiostat) ……………………………………64 3-4.5 紫外/可見/近紅外光吸收光譜儀(UV-Visible NIR Absorption Spectometer) …………………………………64 3-4.6 電化學交流阻抗分析(Electrochemical impedance spectroscopy,EIS) …………………………………………64 3-4.7 熱重分析儀(Thermogravimetry Analysis,TGA) …………66 第四章 網印氧化鎢薄膜及其於電致變色元件之應用…………………67 4-1不同熱處理溫度對電致色變性質之影響………………………67 4-1-1氧化鎢薄膜表面對電致變色性質影響 …………………67 4-1-2氧化鎢薄膜之電致變色性質………………………………69 4-2不同熱處理時間對電致色變性質之影響………………………73 4-2-1氧化鎢薄膜表面對電致變色性質影響……………………73 4-2-2氧化鎢薄膜之電致變色性質………………………………75 4-3不同網印次數對電致色變性質之影響…………………………79 4-3-1氧化鎢薄膜表面對電致變色性質影響……………………79 4-3-2氧化鎢薄膜之電致變色材料鑑定…………………………80 4-3-3氧化鎢薄膜之電致變色性質………………………………82 4-3-4循環伏安測試以及交流阻抗法分析氧化鎢薄膜之載子轉 移與傳輸特性……………………………………………86 4-4 結論………………………………………………………………91 第五章 網印氧化鎢/白金電極與無溶劑高分子電解液於光伏致變色元件 之應用……………………………………………………………93 5-1以網印法製備氧化鎢/白金電極對光伏致變色元件性質之影響..96 5-1.1 網印氧化鎢/白金複合式電極……………………………..96 5-1.2染料敏化二氧化鈦光電極…………………………………97 5-2液態電解液應用於光伏致變色元件……………………………...97 5-2.1液態電解液與白金電極性質分析…………………………98 5-2.2液態電解液之變色性質分析………………………………99 5-3無溶劑高分子電解液應用於光電致變色元件…………………103 5-3.1不同LiI濃度對光伏致變色元件之影響…………………104 5-3.2定DMPII濃度、改變LiI濃度對光伏致變色元件之影響.106 5-3.3定LiI濃度、改變DMPII濃度對光伏致變色元件之影響.110 5-4光伏致變色元件長時間測試……………………………………113 5-5模組化光伏致變色元件…………………………………………115 5-6結論………………………………………………………………116 第六章 總結………………………………………………………………118 第七章 參考文獻…………………………………………………………120

    [1] R. Baetens, B. P. Jelle, and A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review," Solar Energy Materials and Solar Cells, vol. 94, pp. 87-105, 2010.
    [2] C. G. Granqvist, Handbook of inorganic electrochromic materials. The Netherlands: Elsevier, 1995.
    [3] E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez -Ramirez, F. Peiro, A. Cornet, J. R. Morante, L. A. Solovyov, B. Z. Tian, T. Bo, and D. Y. Zhao, "Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications," Advanced Functional Materials, vol. 17, pp. 1801-1806, Jul 2007.
    [4] D. Chen and J. H. Ye, "Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties," Advanced Functional Materials, vol. 18, pp. 1922-1928, Jul 2008.
    [5] C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, and B. A. Gregg, "Photoelectrochromic windows and displays," Nature, vol. 383, pp. 608-610, Oct 1996.
    [6] J. J. Wu, M. D. Hsieh, W. P. Liao, W. T. Wu, and J. S. Chen, "Fast-Switching Photovoltachromic Cells with Tunable Transmittance," Acs Nano, vol. 3, pp. 2297-2303, Aug 2009.
    [7] Y. Hirshberg, "REVERSIBLE FORMATION AND ERADICATION OF COLORS BY IRRADIATION AT LOW TEMPERATURES - A PHOTOCHEMICAL MEMORY MODEL," Journal of the American Chemical Society, vol. 78, pp. 2304-2312, 1956.
    [8] V. Melnik, I. Khatsevych, V. Kladko, A. Kuchuk, V. Nikirin, and B. Romanyuk, "Low-temperature method for thermochromic high ordered VO2 phase formation," Materials Letters, vol. 68, pp. 215-217, 2012.
    [9] D. R. Bloomquist and R. D. Willett, "THERMOCHROMIC PHASE-TRANSITIONS IN TRANSITION-METAL SALTS," Coordination Chemistry Reviews, vol. 47, pp. 125-164, 1982 1982.
    [10] V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, "Gasochromic windows," Solar Energy Materials and Solar Cells, vol. 84, pp. 305-314, 2004.
    [11] G. A. Niklasson and C. G. Granqvist, "Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these," Journal of Materials Chemistry, vol. 17, pp. 127-156, 2007.
    [12] S. K. Deb, "A Novel Electrophotographic System," Applied Optics, vol. Suppl 3, p. 192, 1969.
    [13] K. Bange, "Colouration of tungsten oxide films: A model for optically active coatings," Solar Energy Materials and Solar Cells, vol. 58, pp. 1-131, May 1999.
    [14] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, "Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications," Advanced Functional Materials, vol. 21, pp. 2175-2196, 2011.
    [15] H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh, "Dye-sensitized solar cells based on WO3," Langmuir, vol. 26, pp. 19148-52, Dec 21 2010.
    [16] J. Zhang, J.-p. Tu, X.-h. Xia, X.-l. Wang, and C.-d. Gu, "Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance," Journal of Materials Chemistry, vol. 21, p. 5492, 2011.
    [17] W. T. Wu, W. P. Liao, J. S. Chen, and J. J. Wu, "An efficient route to nanostructured tungsten oxide films with improved electrochromic properties," Chemphyschem, vol. 11, pp. 3306-12, Oct 25 2010.
    [18] S. Balaji, Y. Djaoued, A. S. Albert, R. Z. Ferguson, and R. Bruning, "Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows," Chemistry of Materials, vol. 21, pp. 1381-1389, Apr 2009.
    [19] S. Balaji, Y. Djaoued, A.-S. Albert, R. Brüning, N. Beaudoin, and J. Robichaud, "Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices," Journal of Materials Chemistry, vol. 21, p. 3940, 2011.
    [20] M. Wang, G. Fang, L. Yuan, H. Huang, Z. Sun, N. Liu, S. Xia, and X. Zhao, "High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays' supported electrode," Nanotechnology, vol. 20, p. 185304, May 6 2009.
    [21] P. M. Kadam, N. L. Tarwal, S. S. Mali, H. P. Deshmukh, and P. S. Patil, "Enhanced electrochromic performance of f-MWCNT-WO3 composite," Electrochimica Acta, vol. 58, pp. 556-561, 2011.
    [22] L. Hechavarría, H. Hu, M. Miranda, and M. E. Nicho, "Electrochromic responses of low-temperature-annealed tungsten oxide thin films in contact with a liquid and a polymeric gel electrolyte," Journal of Solid State Electrochemistry, vol. 13, pp. 687-695, 2008.
    [23] P. Barbosa, L. Rodrigues, M. Silva, M. Smith, A. Gonçalves, and E. Fortunato, "Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays," Journal of Materials Chemistry, vol. 20, p. 723, 2010.
    [24] A. Georg and A. Georg, "Electrochromic device with a redox electrolyte," Solar Energy Materials and Solar Cells, vol. 93, pp. 1329-1337, 2009.
    [25] A. Hauch, A. Georg, U. O. Krašovec, and B. Orel, "Comparison of Photoelectrochromic Devices with Different Layer Configurations," Journal of the Electrochemical Society, vol. 149, p. H159, 2002.
    [26] A. Georg, A. Georg, and U. O. Krasovec, "Photoelectrochromic window with Pt catalyst," Thin Solid Films, vol. 502, pp. 246-251, Apr 2006.
    [27] U. O. Krasovec, A. Georg, A. Georg, V. Wittwer, J. Luther, and M. Topic, "Performance of a solid-state photoelectrochromic device," Solar Energy Materials and Solar Cells, vol. 84, pp. 369-380, Oct 2004.
    [28] G. De Filpo, S. Mormile, F. P. Nicoletta, and G. Chidichimo, "Fast, self-supplied, all-solid photoelectrochromic film," Journal of Power Sources, vol. 195, pp. 4365-4369, 2010.
    [29] A. Cannavale, M. Manca, F. Malara, L. De Marco, R. Cingolani, and G. Gigli, "Highly efficient smart photovoltachromic devices with tailored electrolyte composition," Energy & Environmental Science, vol. 4, p. 2567, 2011.
    [30] Z. Jiao, J. L. Song, X. W. Sun, X. W. Liu, J. M. Wang, L. Ke, and H. V. Demir, "A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films," Solar Energy Materials and Solar Cells, vol. 98, pp. 154-160, 2012.
    [31] C.-H. Wu, C.-Y. Hsu, K.-C. Huang, P.-C. Nien, J.-T. s. Lin, and K.-C. Ho, "A photoelectrochromic device based on gel electrolyte with a fast switching rate," Solar Energy Materials and Solar Cells, vol. 99, pp. 148-153, 2012.
    [32] S. K. Deb, S. H. Lee, C. E. Tracy, J. R. Pitts, B. A. Gregg, and H. M. Branz, "Stand-alone photovoltaic-powered electrochromic smart window," Electrochimica Acta, vol. 46, pp. 2125-2130, Apr 2001.
    [33] R. H. Ma and Y. C. Chen, "BIPV-powered smart windows utilizing photovoltaic and electrochromic devices," Sensors (Basel), vol. 12, pp. 359-72, 2012.
    [34] L.-M. Huang, C.-W. Hu, H.-C. Liu, C.-Y. Hsu, C.-H. Chen, and K.-C. Ho, "Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications," Solar Energy Materials and Solar Cells, vol. 99, pp. 154-159, 2012.
    [35] L. R. F. Allen J. Bard, "Electrochemical Methods: Fundamentals and Applications," Ch. 10, 856 (John Wiley & Sons 2001).
    [36] J. Bisquert, "Theory of the impedance of electron diffusion and recombination in a thin layer," Journal of Physical Chemistry B, vol. 106, pp. 325-333, Jan 2002.
    [37] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, "Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy," Solar Energy Materials and Solar Cells, vol. 87, pp. 117-131, 2005.
    [38] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," Journal of Physical Chemistry B, vol. 110, pp. 13872-13880, Jul 20 2006.
    [39] C. Ho, I. D. Raistrick, and R. A. Huggins, "Application of Ac Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin-Films," Journal of the Electrochemical Society, vol. 127, pp. 343-350, 1980.
    [40] M. S. Mattsson, "Li insertion into WO3: introduction of a new electrochemical analysis method and comparison with impedance spectroscopy and the galvanostatic intermittent titration technique," Solid State Ionics, vol. 131, pp. 261-273, Jun 2000.
    [41] P. Judeinstein and J. Livage, "ELECTROCHEMICAL MECHANISMS IN TUNGSTEN-OXIDE THIN-FILMS," Journal De Chimie Physique Et De Physico-Chimie Biologique, vol. 90, pp. 1137-1147, May 1993.
    [42] H. Huang, L. Q. Chen, X. J. Huang, and R. J. Xue, "STUDIES ON PAN-BASED LITHIUM SALT COMPLEX," Electrochimica Acta, vol. 37, pp. 1671-1673, Jul 1992.
    [43] L. Hechavarría, N. Mendoza, P. Altuzar, and H. Hu, "In situ formation of polyethylene glycol–titanium complexes as solvent-free electrolytes for electrochromic device application," Journal of Solid State Electrochemistry, vol. 14, pp. 323-330, 2009.
    [44] L. Hechavarría, N. Mendoza, M. E. Rincón, J. Campos, and H. Hu, "Photoelectrochromic performance of tungsten oxide based devices with PEG–titanium complex as solvent-free electrolytes," Solar Energy Materials and Solar Cells, vol. 100, pp. 27-32, 2012.

    下載圖示 校內:2018-02-06公開
    校外:2018-02-06公開
    QR CODE