| 研究生: |
楊明哲 Yang, Ming-Che |
|---|---|
| 論文名稱: |
網印氧化鎢薄膜與無溶劑高分子電解液於光伏致變色元件之應用 Fabrication of photovoltachromic cells using screen-printed tungsten oxide and solvent-free polymer electrolyte |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 氧化鎢薄膜 、電致變色元件 、無溶劑高分子電解液 、光伏致變色元件 |
| 外文關鍵詞: | Tungsten oxide films, Electrochromic cell, solvent free polymer electrolyte, Photovoltachromic cell |
| 相關次數: | 點閱:76 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以網印的方法網印氧化鎢薄膜,首先以過鎢酸溶液與增稠劑混合而形成氧化鎢漿料,在經用網印法印製在FTO玻璃基板上,經由電性量測,其具有良好的電致變色性質,之後將此氧化鎢薄膜應用於光伏致變色元件上。搭配網印白金而形成之氧化鎢/白金複合式電極,再以N719染料敏化二氧化鈦電極組裝而成光伏致變色元件。電解液則是使用無溶劑高分子電解液,藉由調控電解液中離子的含量來分析光伏致變色元件的光學性質與光電轉換效率之影響。其元件於照光下,短路與開路著褪色時間各為8秒與6秒;此外,於短路下,開燈與關燈著褪時間分別為8秒與81秒。而其電池效率為0.28 %,並將元件外接一可調控電阻,藉由調控電阻值可改變元件著色程度。
Tungsten oxide films have been formed by screen-printed. First, peroxopolytungstic acid solution was mixed with a binder to form a slurry and printed on the FTO glass substrates. By the electrical measurement, tungsten oxide films show a good electrochromic properties. Afterward, this tungsten oxide film was applied to the photovoltachromic devices. To assemble the photovoltachromic devices combine screen-printed tungsten oxide/platinum composite electrode and N719 dye-sensitized titanium dioxide electrode. The solvent free polymer electrolyte was applied to photovoltachromic devices. By the adjustment of the electrolyte, the optical properties and the photoelectric conversion efficiency of the photovoltachromic devices were analyzed. Under illumination, the response time for coloring and bleaching the cell with short-circuited and open-circuited are 8 and 6s, respectively. In addition, it shows the response time for coloring and bleaching under illumination and dark are 8 and 81s. The cell’s photoelectric conversion efficiency was 0.28%, and the transmittance of the colored photovoltachromic devices was variable by adjusting the variable resistance in series with photovoltachromic devices.
[1] R. Baetens, B. P. Jelle, and A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review," Solar Energy Materials and Solar Cells, vol. 94, pp. 87-105, 2010.
[2] C. G. Granqvist, Handbook of inorganic electrochromic materials. The Netherlands: Elsevier, 1995.
[3] E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez -Ramirez, F. Peiro, A. Cornet, J. R. Morante, L. A. Solovyov, B. Z. Tian, T. Bo, and D. Y. Zhao, "Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications," Advanced Functional Materials, vol. 17, pp. 1801-1806, Jul 2007.
[4] D. Chen and J. H. Ye, "Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties," Advanced Functional Materials, vol. 18, pp. 1922-1928, Jul 2008.
[5] C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, and B. A. Gregg, "Photoelectrochromic windows and displays," Nature, vol. 383, pp. 608-610, Oct 1996.
[6] J. J. Wu, M. D. Hsieh, W. P. Liao, W. T. Wu, and J. S. Chen, "Fast-Switching Photovoltachromic Cells with Tunable Transmittance," Acs Nano, vol. 3, pp. 2297-2303, Aug 2009.
[7] Y. Hirshberg, "REVERSIBLE FORMATION AND ERADICATION OF COLORS BY IRRADIATION AT LOW TEMPERATURES - A PHOTOCHEMICAL MEMORY MODEL," Journal of the American Chemical Society, vol. 78, pp. 2304-2312, 1956.
[8] V. Melnik, I. Khatsevych, V. Kladko, A. Kuchuk, V. Nikirin, and B. Romanyuk, "Low-temperature method for thermochromic high ordered VO2 phase formation," Materials Letters, vol. 68, pp. 215-217, 2012.
[9] D. R. Bloomquist and R. D. Willett, "THERMOCHROMIC PHASE-TRANSITIONS IN TRANSITION-METAL SALTS," Coordination Chemistry Reviews, vol. 47, pp. 125-164, 1982 1982.
[10] V. Wittwer, M. Datz, J. Ell, A. Georg, W. Graf, and G. Walze, "Gasochromic windows," Solar Energy Materials and Solar Cells, vol. 84, pp. 305-314, 2004.
[11] G. A. Niklasson and C. G. Granqvist, "Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these," Journal of Materials Chemistry, vol. 17, pp. 127-156, 2007.
[12] S. K. Deb, "A Novel Electrophotographic System," Applied Optics, vol. Suppl 3, p. 192, 1969.
[13] K. Bange, "Colouration of tungsten oxide films: A model for optically active coatings," Solar Energy Materials and Solar Cells, vol. 58, pp. 1-131, May 1999.
[14] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, and K. Kalantar-zadeh, "Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications," Advanced Functional Materials, vol. 21, pp. 2175-2196, 2011.
[15] H. Zheng, Y. Tachibana, and K. Kalantar-Zadeh, "Dye-sensitized solar cells based on WO3," Langmuir, vol. 26, pp. 19148-52, Dec 21 2010.
[16] J. Zhang, J.-p. Tu, X.-h. Xia, X.-l. Wang, and C.-d. Gu, "Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance," Journal of Materials Chemistry, vol. 21, p. 5492, 2011.
[17] W. T. Wu, W. P. Liao, J. S. Chen, and J. J. Wu, "An efficient route to nanostructured tungsten oxide films with improved electrochromic properties," Chemphyschem, vol. 11, pp. 3306-12, Oct 25 2010.
[18] S. Balaji, Y. Djaoued, A. S. Albert, R. Z. Ferguson, and R. Bruning, "Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows," Chemistry of Materials, vol. 21, pp. 1381-1389, Apr 2009.
[19] S. Balaji, Y. Djaoued, A.-S. Albert, R. Brüning, N. Beaudoin, and J. Robichaud, "Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices," Journal of Materials Chemistry, vol. 21, p. 3940, 2011.
[20] M. Wang, G. Fang, L. Yuan, H. Huang, Z. Sun, N. Liu, S. Xia, and X. Zhao, "High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays' supported electrode," Nanotechnology, vol. 20, p. 185304, May 6 2009.
[21] P. M. Kadam, N. L. Tarwal, S. S. Mali, H. P. Deshmukh, and P. S. Patil, "Enhanced electrochromic performance of f-MWCNT-WO3 composite," Electrochimica Acta, vol. 58, pp. 556-561, 2011.
[22] L. Hechavarría, H. Hu, M. Miranda, and M. E. Nicho, "Electrochromic responses of low-temperature-annealed tungsten oxide thin films in contact with a liquid and a polymeric gel electrolyte," Journal of Solid State Electrochemistry, vol. 13, pp. 687-695, 2008.
[23] P. Barbosa, L. Rodrigues, M. Silva, M. Smith, A. Gonçalves, and E. Fortunato, "Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays," Journal of Materials Chemistry, vol. 20, p. 723, 2010.
[24] A. Georg and A. Georg, "Electrochromic device with a redox electrolyte," Solar Energy Materials and Solar Cells, vol. 93, pp. 1329-1337, 2009.
[25] A. Hauch, A. Georg, U. O. Krašovec, and B. Orel, "Comparison of Photoelectrochromic Devices with Different Layer Configurations," Journal of the Electrochemical Society, vol. 149, p. H159, 2002.
[26] A. Georg, A. Georg, and U. O. Krasovec, "Photoelectrochromic window with Pt catalyst," Thin Solid Films, vol. 502, pp. 246-251, Apr 2006.
[27] U. O. Krasovec, A. Georg, A. Georg, V. Wittwer, J. Luther, and M. Topic, "Performance of a solid-state photoelectrochromic device," Solar Energy Materials and Solar Cells, vol. 84, pp. 369-380, Oct 2004.
[28] G. De Filpo, S. Mormile, F. P. Nicoletta, and G. Chidichimo, "Fast, self-supplied, all-solid photoelectrochromic film," Journal of Power Sources, vol. 195, pp. 4365-4369, 2010.
[29] A. Cannavale, M. Manca, F. Malara, L. De Marco, R. Cingolani, and G. Gigli, "Highly efficient smart photovoltachromic devices with tailored electrolyte composition," Energy & Environmental Science, vol. 4, p. 2567, 2011.
[30] Z. Jiao, J. L. Song, X. W. Sun, X. W. Liu, J. M. Wang, L. Ke, and H. V. Demir, "A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films," Solar Energy Materials and Solar Cells, vol. 98, pp. 154-160, 2012.
[31] C.-H. Wu, C.-Y. Hsu, K.-C. Huang, P.-C. Nien, J.-T. s. Lin, and K.-C. Ho, "A photoelectrochromic device based on gel electrolyte with a fast switching rate," Solar Energy Materials and Solar Cells, vol. 99, pp. 148-153, 2012.
[32] S. K. Deb, S. H. Lee, C. E. Tracy, J. R. Pitts, B. A. Gregg, and H. M. Branz, "Stand-alone photovoltaic-powered electrochromic smart window," Electrochimica Acta, vol. 46, pp. 2125-2130, Apr 2001.
[33] R. H. Ma and Y. C. Chen, "BIPV-powered smart windows utilizing photovoltaic and electrochromic devices," Sensors (Basel), vol. 12, pp. 359-72, 2012.
[34] L.-M. Huang, C.-W. Hu, H.-C. Liu, C.-Y. Hsu, C.-H. Chen, and K.-C. Ho, "Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications," Solar Energy Materials and Solar Cells, vol. 99, pp. 154-159, 2012.
[35] L. R. F. Allen J. Bard, "Electrochemical Methods: Fundamentals and Applications," Ch. 10, 856 (John Wiley & Sons 2001).
[36] J. Bisquert, "Theory of the impedance of electron diffusion and recombination in a thin layer," Journal of Physical Chemistry B, vol. 106, pp. 325-333, Jan 2002.
[37] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, and A. Hagfeldt, "Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy," Solar Energy Materials and Solar Cells, vol. 87, pp. 117-131, 2005.
[38] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," Journal of Physical Chemistry B, vol. 110, pp. 13872-13880, Jul 20 2006.
[39] C. Ho, I. D. Raistrick, and R. A. Huggins, "Application of Ac Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin-Films," Journal of the Electrochemical Society, vol. 127, pp. 343-350, 1980.
[40] M. S. Mattsson, "Li insertion into WO3: introduction of a new electrochemical analysis method and comparison with impedance spectroscopy and the galvanostatic intermittent titration technique," Solid State Ionics, vol. 131, pp. 261-273, Jun 2000.
[41] P. Judeinstein and J. Livage, "ELECTROCHEMICAL MECHANISMS IN TUNGSTEN-OXIDE THIN-FILMS," Journal De Chimie Physique Et De Physico-Chimie Biologique, vol. 90, pp. 1137-1147, May 1993.
[42] H. Huang, L. Q. Chen, X. J. Huang, and R. J. Xue, "STUDIES ON PAN-BASED LITHIUM SALT COMPLEX," Electrochimica Acta, vol. 37, pp. 1671-1673, Jul 1992.
[43] L. Hechavarría, N. Mendoza, P. Altuzar, and H. Hu, "In situ formation of polyethylene glycol–titanium complexes as solvent-free electrolytes for electrochromic device application," Journal of Solid State Electrochemistry, vol. 14, pp. 323-330, 2009.
[44] L. Hechavarría, N. Mendoza, M. E. Rincón, J. Campos, and H. Hu, "Photoelectrochromic performance of tungsten oxide based devices with PEG–titanium complex as solvent-free electrolytes," Solar Energy Materials and Solar Cells, vol. 100, pp. 27-32, 2012.