| 研究生: |
賴易伸 Lai, Yi-Shen |
|---|---|
| 論文名稱: |
微晶片型徑向偏振Nd:YVO4雷射 Radially polarized beam in a microchip Nd:YVO4 laser |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 塑形 、徑向偏振 、熱透鏡 |
| 外文關鍵詞: | Shaping, Radial polarization, Thermal lens |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
徑向偏振微晶片雷射被藉由將泵源輪廓塑形而產生,瓶狀光束(Bottle-beam)的輪廓被以平面波通過軸稜錐透鏡對將其聚焦集合所構成而其方向分別位於圓錐面上,當熱效應與雷射晶體的雙折射被考慮時,泵源的斜向入射區分了e-ray與o-ray來實現徑向偏振的輸出光束,當泵源功率於3.06W到4.27W之間時其平均偏振比為23.6。
A radially polarized microchip Nd:YVO4 laser was generated by shaping the pump profile. The bottle-beam pump profile was formed by a plane wave propagating through an axicon and a lens to be a group of focused plane waves which the directions of which were located on a conical surface. When the thermal effect and birefringence of the laser crystal were considered, the oblique incident pump profile distinguished the extraordinary ray from the ordinary ray to achieve the radially polarized output beam. The average contrast ratio was 23.6 when the pump power was between 3.06 and 4.27 W.
1. Zhan, Q., Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 2009. 1(1) p. 1.
2. Mushiake, Y., N. Nakajima, and Matsumur.K, Generation of Radially Polarized Optical Beam Mode by Laser Oscillation. Proceedings of the Institute of Electrical and Electronics Engineers, 1972. 60(9) p. 1107-1108.
3. Pohl, D., Operation of a Ruby-Laser in Purely Transverse Electric Mode TE01. Applied Physics Letters, 1972. 20(7) p. 266-267.
4. Kozawa, Y. and S. Sato, Generation of a radially polarized laser beam by use of a conical Brewster prism. Optics Letters, 2005. 30(22) p. 3063-3065.
5. Moshe, I., S. Jackel, and A. Meir, Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects. Opt Lett, 2003. 28(10) p. 807-9.
6. Bisson, J.F., et al., Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon. Opt Express, 2006. 14(8) p. 3304-11.
7. Tidwell, S.C., D.H. Ford, and W.D. Kimura, Generating radially polarized beams interferometrically. Appl Opt, 1990. 29(15) p. 2234-9.
8. Stalder, M. and M. Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt Lett, 1996. 21(23) p. 1948-50.
9. Machavariani, G., et al., Spatially-variable retardation plate for efficient generation of radially- and azimuthally-polarized beams. Optics Communications, 2008. 281(4) p. 732-738.
10. Yonezawa, K., Y. Kozawa, and S. Sato, Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd : YVO4 crystal. Optics Letters, 2006. 31(14) p. 2151-2153.
11. Kozawa, Y., K. Yonezawa, and S. Sato, Radially polarized laser beam from a Nd : YAG laser cavity with a c-cut YVO4 crystal. Applied Physics B-Lasers and Optics, 2007. 88(1) p. 43-46.
12. Mcleod, J.H., The Axicon, a New Type of Optical Element. Journal of the Optical Society of America, 1953. 43(4) p. 328-328.
13. Belanger, P.A. and M. Rioux, Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam. Appl Opt, 1978. 17(7) p. 1080-8.
14. Altucci, C., et al., Harmonic generation in gases by use of Bessel-Gauss laser beams. Journal of the Optical Society of America B-Optical Physics, 2000. 17(1) p. 34-42.
15. Herman, R.M. and T.A. Wiggins, Production and Uses of Diffractionless Beams. Journal of the Optical Society of America a-Optics Image Science and Vision, 1991. 8(6) p. 932-942.
16. Durnin, J., J. Miceli, Jr., and J.H. Eberly, Diffraction-free beams. Phys Rev Lett, 1987. 58(15) p. 1499-1501.
17. Durnin, J., Exact-Solutions for Nondiffracting Beams .1. The Scalar Theory. Journal of the Optical Society of America a-Optics Image Science and Vision, 1987. 4(4) p. 651-654.
18. Lin, Y., et al., Experimental investigation of Bessel beam characteristics. Appl Opt, 1992. 31(15) p. 2708-13.
19. Lapointe, M.R., Review of Nondiffracting Bessel Beam Experiments. Optics and Laser Technology, 1992. 24(6) p. 315-321.
20. Durnin, J., J.J. Miceli, Jr., and J.H. Eberly, Comparison of Bessel and Gaussian beams. Opt Lett, 1988. 13(2) p. 79.
21. Indebetouw, G., Nondiffracting Optical-Fields - Some Remarks on Their Analysis and Synthesis. Journal of the Optical Society of America a-Optics Image Science and Vision, 1989. 6(1) p. 150-152.
22. Vasara, A., J. Turunen, and A.T. Friberg, Realization of general nondiffracting beams with computer-generated holograms. J Opt Soc Am A, 1989. 6(11) p. 1748-54.
23. Turunen, J., A. Vasara, and A.T. Friberg, Holographic generation of diffraction-free beams. Appl Opt, 1988. 27(19) p. 3959-62.
24. Ait-Ameur, K. and F. Sanchez, Gaussian beam conversion using an axicon. Journal of Modern Optics, 1999. 46(10) p. 1537-1548.
25. Scott, G. and N. Mcardle, Efficient Generation of Nearly Diffraction-Free Beams Using an Axicon. Optical Engineering, 1992. 31(12) p. 2640-2643.
26. Gutierrez-Vega, J.C., R. Rodriguez-Masegosa, and S. Chavez-Cerda, Focusing evolution of generalized propagation invariant optical fields. Journal of Optics a-Pure and Applied Optics, 2003. 5(3) p. 276-282.
27. Chavez-Cerda, S. and G.H.C. New, Evolution of focused Hankel waves and Bessel beams. Optics Communications, 2000. 181(4-6) p. 369-377.
28. Lu, B.D., et al., Focusing properties of Bessel beams. Optics Communications, 1996. 131(4-6) p. 223-228.
29. Lu, B., W.L. Huang, and B. Zhang, Fraunhofer-Diffraction of a Bessel Beam Focused by an Aperture Lens. Optics Communications, 1995. 119(1-2) p. 6-12.
30. Wei, M.D., W.L. Shiao, and Y.T. Lin, Adjustable generat on of bottle and hollow beams using an axicon. Optics Communications, 2005. 248(1-3) p. 7-14.
31. 蕭文龍, 利用軸稜錐透鏡可調產生Bottle 和 Hollow 光束 碩士論文. 2004.
32. De Angelis, M., et al., Axially symmetric hollow beams using refractive conical lenses. Optics and Lasers in Engineering, 2003. 39(3) p. 283-291.
33. Depret, B., P. Verkerk, and D. Hennequin, Characterization and modelling of the hollow beam produced by a real conical lens. Optics Communications, 2002. 211(1-6) p. 31-38.
34. Cacciapuoti, L., et al., Single-beam optical bottle for cold atoms using a conical lens. European Physical Journal D, 2001. 14(3) p. 373-376.
35. Manek, I., Y.B. Ovchinnikov, and R. Grimm, Generation of a hollow laser beam for atom trapping using an axicon. Optics Communications, 1998. 147(1-3) p. 67-70.
36. Wright, E.M., J. Arlt, and K. Dholakia, Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams. Physical Review A, 2001. 63(1).
37. Weber, R., et al., Effects of Radial and Tangential Polarization in Laser Material Processing, in Lasers in Manufacturing 2011: Proceedings of the Sixth International Wlt Conference on Lasers in Manufacturing, Vol 12, Pt A, M. Schmidt, et al., Editors. 2011. p. 21-30.
38. Kraus, M., et al., Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Optics Express, 2010. 18(21) p. 22305-22313.
39. Meier, M., V. Romano, and T. Feurer, Material processing with pulsed radially and azimuthally polarized laser radiation. Applied Physics a-Materials Science & Processing, 2007. 86(3) p. 329-334.
40. Niziev, V.G. and A.V. Nesterov, Influence of beam polarization on laser cutting efficiency. Journal of Physics D-Applied Physics, 1999. 32(13) p. 1455-1461.
41. Arlt, J. and M.J. Padgett, Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt Lett, 2000. 25(4) p. 191-3.
42. Dong, J., et al., Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature – Part II: Theoretical modeling. Applied Physics B, 2007. 89(2-3) p. 367-376.
43. Pfistner, C., et al., Thermal Beam Distortions in End-Pumped Nd-Yag, Nd-Gsgg, and Nd-Ylf Rods. IEEE Journal of Quantum Electronics, 1994. 30(7) p. 1605-1615.