簡易檢索 / 詳目顯示

研究生: 吳芸棋
Wu, Yun-Chi
論文名稱: 運用分子模擬快速預測蛋白質於界面之吸附自由能
Fast Estimation of Protein Adsorption Free Energy at Interface via Molecular Dynamics Simulations
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 101
中文關鍵詞: proteinamyloidair/water interfacemembrane/water interfacemolecular dynamicsadsorption free energy
外文關鍵詞: 蛋白質結構, 氣液界面, 分子動力學模擬, 吸附自由能, 類澱粉蛋白
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質是由一個或多個胺基酸高分子鏈所組成並在生物系統中扮演各種重要的角色。蛋白質的功能和其三維結構高度相關,而蛋白質結構易受外在環境因素影響,如溶液酸鹼值、溫度、濃度等。許多生化反應與應用涉及蛋白質的界面吸附,例如材料表面改質的添加劑、細胞培養、或是生物感測器探測分子等。因此了解與預測蛋白質吸附於界面的折疊結構對於其功能調控極為重要。先前有研究,運用理論吸附的模型搭配分子動態模擬,快速估計蛋白質於溶液中以及在氣液界面的構型自由能差距,用以驗證蛋白質於界面摺疊與吸附之熱力學關係。然而,此吸附模型雖然可以準確估計出不同構型吸附於氣液界面之自由能之差值,但其所估計之吸附自由能有著1至2個數量級之誤差,在此研究中,修正了蛋白質吸附模型,並將吸附自由能之計算分為兩大部分:(1) 蛋白質水合自由能與 (2) 蛋白質於氣液界面所造成氣液界面自由能變化。運用分子模擬,先建構精確的水合自由能與水合表面積之關聯,用以計算20種胺基酸之水合自由能。運用此資料庫進而計算出整個蛋白質之水合自由能。在考慮毛細力和線張力對界面之作用後,亦修正了氣液界面自由能。綜合上述二種熱力學校正因素,此模型可準確地估算出蛋白質以α螺旋與β髮夾之結構的吸附自由能至10%以內之誤差。運用此模型也探討了類澱粉蛋白短鏈的纖維結構從三聚體到六聚體於氣液界面的吸附機制,其結果顯示所排開的氣液接觸所造成的自由能變化,是類澱粉蛋白吸附於界面的主要驅動力。此模型更可進一步應用於蛋白質吸附於生物雙層膜表面(1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)),並準確的估算出其從水相移動到膜表面的吸附自由能分布。本研究所建構之蛋白質吸附模型,有利於瞭解蛋白質於界面之結構變化,將有助於日後生化工程等領域之發展。

    Proteins are biopolymers with many important biological functions such as structural supports, catalysis, and cell signaling, etc. Applications of proteins, e.g. sensors and biocatalysts, require them to function at interfaces. Since the function of a protein is directly related to its 3-dimentional folding structure, understanding the protein conformational preference at the interface is critical for their application designs. Previous study derived a fast and accurate estimation of protein conformational preference changes when adsorbed at air/water interface using molecular dynamics (MD) simulations and the experimental solvation free energy data. Despite of the accurate estimation of the adsorption free energy difference between two protein conformations, the value for each adsorption free energy is overestimated by 1-2 orders. Here, we re-derived the de-solvation and the interfacial energy terms to provide a more accurate adsorption free energy estimation. Using MD simulation, we mapped the solvent accessible surface area (SASA) with the ideal free energy to identify the direct relation between them. This allowed us to construct the de-solvation free energy and SASA database for 20 amino acids, allowing the further estimation of protein de-solvation free energy. For the interfacial energy, we corrected the surface tension using the factor, k, related to the effects of surface meniscus and line tension at interface. The refined estimation resulted in greatly improved adsorption free energy estimations with less than 10% error for polyalanine and GB1 peptide in both α–helix and β-hairpin conformations. This model was further applied to investigate the adsorption free energy of small amyloid peptide fibrils at air/water interface. Our results showed that the fibril tends to adsorb at the air/water interface due to the reduction of adsorption free energy from trimer to hexamer. We also extended the new adsorption model to estimate adsorption free energy of protein at the water/DOPC bilayer interface. The resulting energy profiles of α-helical and β-strand polyalanine were in excellent agreement with the reference umbrella sampling free energy profiles.

    摘要 I Abstract II Acknowledgment IV Table of Contents V List of Tables VIII List of Figures X List of Symbols XIX CHAPTER 1 INTRODUCTION 1 1.1 Structure of Protein 1 1.2 Functional Application of Protein 4 1.3 Motivation 7 CHAPTER 2 LITERATURE REVIEW 10 2.1 Protein at Interface 10 2.1.1 Experimental Researches 10 2.1.2 Computational Researches 11 2.2 Theoretical Model of Particle at Interface 14 2.2.1 Pieranski’s Approximation 14 2.2.2 Line Tension 16 2.2.3 Capillary forces 16 2.2.4 Prediction of Protein at Interface 18 CHAPTER 3 METHOD 20 3.1 Molecular Dynamics Simulation Details 20 3.1.1 Initial Conformations 20 3.1.2 Protein in Bulk Water and Air/Water System 21 3.1.3 Protein in Membrane 22 3.1.4 Simulation Parameter 24 3.2 Protein Adsorption Free Energy 24 3.2.1 Original Adsorption Free Energy Estimation 24 3.2.2 De-solvation Free Energy 26 3.2.3 Interfacial Energy 28 3.2.4 Adsorption Free Energy Calculation via Umbrella Sampling 30 3.3 Modification of De-solvation Free Energy 33 3.3.1 Scaling Factor 33 3.3.2 Ideal De-solvation Energy of Amino Acid 36 3.4 Modification of Interfacial Term 38 3.5 Adsorption Free Energy Estimation in Membrane System 39 3.5.1 Interfacial Term 40 3.5.2 De-solvation Term 41 CHAPTER 4 RESULT AND DISCUSSION 43 4.1 Validation of the Adsorption Free Energy Estimation 43 4.1.1 Energy Profile of Umbrella Sampling 43 4.1.2 Difference of two conformation energy 44 4.2 Modified the De-solvation Term 46 4.2.1 Contribution of Backbone and Side Chain 46 4.2.2 Different Calculation of Scaling Factor 48 4.2.3 De-solvation Energy Directly Determined via Contact Water 52 4.3 Modification of Interfacial Term 58 4.3.1 Scaling Factor of Interfacial Term 59 4.3.2 Solvation Free Energy of Amino acid based on k 62 4.3.3 Ideal Solvation Free Energy of Amino acid 65 4.4 Final Protocol 73 4.5 Amyloid Aggregation 74 4.6 Membrane System 80 4.7 Possible Improvement 86 CHAPTER 5 CONCLUSION 90 Reference 92

    [1] C. K.Mathews, K.Van Holde, D.Appling, and S.Anthony-Cahill, Biochemistry (4th ed.). 2012.
    [2] C. W.Pratt and K.Cornely, Essential biochemistry.
    [3] M.Heim, L.Römer, and T.Scheibel, “Hierarchical structures made of proteins. the complex architecture of spider webs and their constituent silk proteins,” Chemical Society Reviews, vol. 39, no. 1. Royal Society of Chemistry, pp. 156–164, 14-Jan-2010.
    [4] J. E.Darnell, H. F.Lodish, and D.Baltimore, Molecular cell biology. .
    [5] S. E.Kahn, S.Andrikopoulos, and C. B.Verchere, “Islet amyloid: A long-recognized but underappreciated pathological feature of type 2 diabetes,” Diabetes, vol. 48, no. 2. American Diabetes Association Inc., pp. 241–253, 01-Feb-1999.
    [6] C. A.Ross and M. A.Poirier, “Protein aggregation and neurodegenerative disease,” Nat. Med., vol. 10, no. 7, p. S10, Jul.2004.
    [7] J. B.Martin, “Molecular Basis of the Neurodegenerative Disorders,” N. Engl. J. Med., vol. 340, no. 25, pp. 1970–1980, Jun.1999.
    [8] J.Kang et al., “The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor,” Nature, vol. 325, no. 6106, pp. 733–736, 1987.
    [9] D. J.Selkoe, “Alzheimer’s disease: Genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2. American Physiological Society, pp. 741–766, 2001.
    [10] A.Sahoo, H.Xu, andS.Matysiak, “Pathways of amyloid-beta absorption and aggregation in a membranous environment,” Phys. Chem. Chem. Phys., vol. 21, no. 16, pp. 8559–8568, 2019.
    [11] C. H.Davis and M. L.Berkowitz, “A molecular dynamics study of the early stages of amyloid-β(1-42) oligomerization: The role of lipid membranes,” Proteins Struct. Funct. Bioinforma., vol. 78, no. 11, pp. 2533–2545, 2010.
    [12] K. V. R.Chary and G.Govil, “Basic Concepts In NMR Spectroscopy,” in NMR in Biological Systems, Springer Netherlands, 2008, pp. 1–41.
    [13] M.Hall and F.Tamanoi, “Structure, function and regulation of tor complexes from yeasts to mammals,” 2010.
    [14] K. S.Saladin, S. J.Sullivan, andC. A.Gan, Anatomy & physiology : the unity of form and function. .
    [15] D. D.Chiras, Human biology. .
    [16] E. J. A.Veldhuizen and H. P.Haagsman, “Role of pulmonary surfactant components in surface film formation and dynamics,” Biochimica et Biophysica Acta - Biomembranes, vol. 1467, no. 2. Elsevier, pp. 255–270, 25-Aug-2000.
    [17] F.Banica, “Chemical sensors and biosensors: fundamentals and applications,” 2012.
    [18] A. M.Gonçalves et al., “Trends in protein-based biosensor assemblies for drug screening and pharmaceutical kinetic studies,” Molecules, vol. 19, no. 8. MDPI AG, pp. 12461–12485, 18-Aug-2014.
    [19] W.Schramm, S. H.Paek, and G.Voss, “Strategies for the Immobilization of Antibodies,” Immunomethods, vol. 3, no. 2, pp. 93–103, Oct.1993.
    [20] L.Cao, Carrier‐bound Immobilized Enzymes. Wiley, 2005.
    [21] M. huai Han and C. cheng Chiu, “Fast estimation of protein conformational preference at air/water interface via molecular dynamics simulations,” J. Taiwan Inst. Chem. Eng., vol. 0, pp. 1–8, 2018.
    [22] A.Roehrich et al., “Solid-state NMR studies of biomineralization peptides and proteins,” in ACS Symposium Series, 2012, vol. 1120, pp. 77–96.
    [23] A.Sethuraman, G.Vedantham, T.Imoto, T.Przybycien, andG.Belfort, “Protein unfolding at interfaces: Slow dynamics of α-helix to β-sheet transition,” Proteins Struct. Funct. Genet., vol. 56, no. 4, pp. 669–678, 2004.
    [24] K. H.Wang, W. D.Lin, J. Y.Wu, andY. L.Lee, “Conformation transitions of adsorbed proteins by interfacial forces at an air-liquid interface and their effect on the catalytic activity of proteins,” Soft Matter, vol. 9, no. 9, pp. 2717–2722, 2013.
    [25] J.Tan, J.Zhang, Y.Luo, and S.Ye, “Misfolding of a Human Islet Amyloid Polypeptide at the Lipid Membrane Populates through β-Sheet Conformers without Involving α-Helical Intermediates,” J. Am. Chem. Soc., vol. 141, no. 5, pp. 1941–1948, 2019.
    [26] J. A.McLaurin and A.Chakrabartty, “Characterization of the interactions of Alzheimer β-amyloid peptides with phospholipid membranes,” Eur. J. Biochem., vol. 245, no. 2, pp. 355–363, Apr.1997.
    [27] E.Terzi, G.Hölzemann, and J.Seelig, “Interaction of Alzheimer β-amyloid peptide(1-40) with lipid membranes,” Biochemistry, vol. 36, no. 48, pp. 14845–14852, Dec.1997.
    [28] B. R.Brooks, R. E.Bruccoleri, B. D.Olafson, D. J.States, S.Swaminathan, and M.Karplus, “CHARMM: A program for macromolecular energy, minimization, and dynamics calculations,” J. Comput. Chem., vol. 4, no. 2, pp. 187–217, 1983.
    [29] D. A.Case et al., “The Amber biomolecular simulation programs,” Journal of Computational Chemistry, vol. 26, no. 16. pp. 1668–1688, Dec-2005.
    [30] R.Salomon-Ferrer, D. A.Case, and R. C.Walker, “An overview of the Amber biomolecular simulation package,” Wiley Interdiscip. Rev. Comput. Mol. Sci., vol. 3, no. 2, pp. 198–210, Mar.2013.
    [31] A. D.Mackerell, “Empirical force fields for biological macromolecules: Overview and issues,” Journal of Computational Chemistry, vol. 25, no. 13. pp. 1584–1604, Oct-2004.
    [32] R.DiFelice and S.Corni, “Simulation of peptide-surface recognition,” Journal of Physical Chemistry Letters, vol. 2, no. 13. American Chemical Society, pp. 1510–1519, 07-Jul-2011.
    [33] M.Ozboyaci, D. B.Kokh, S.Corni, and R. C.Wade, “Modeling and simulation of protein-surface interactions: Achievements and challenges,” Q. Rev. Biophys., vol. 49, pp. 1–45, 2016.
    [34] C. C.Chiu, G. R.Dieckmann, and S. O.Nielsen, “Molecular dynamics study of a nanotube-binding amphiphilic helical peptide at different water/hydrophobic interfaces,” J. Phys. Chem. B, vol. 112, no. 51, pp. 16326–16333, Dec.2008.
    [35] C.-C.Chiu, G. R.Dieckmann, and S. O.Nielsen, “Role of Peptide-Peptide Interactions in Stabilizing Peptide-Wrapped Single-Walled Carbon Nanotubes: A Molecular Dynamics Study,” 2009.
    [36] Z. A.Levine, S. A.Fischer, J. E.Shea, and J.Pfaendtner, “Trp-Cage Folding on Organic Surfaces,” J. Phys. Chem. B, vol. 119, no. 33, pp. 10417–10425, Aug.2015.
    [37] Y.Jia, Z.Qian, Y.Zhang, and G.Wei, “Adsorption and orientation of human islet amyloid polypeptide (hIAPP) Monomer at anionic lipid bilayers: Implications for membrane-mediated aggregation,” Int. J. Mol. Sci., vol. 14, no. 3, pp. 6241–6258, 2013.
    [38] J. L.MacCallum, W. F.Drew Bennett, and D.Peter Tieleman, “Distribution of amino acids in a lipid bilayer from computer simulations,” Biophys. J., vol. 94, no. 9, pp. 3393–3404, 2008.
    [39] A. C. V.Johansson and E.Lindahl, “Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations,” Proteins Struct. Funct. Genet., vol. 70, no. 4, pp. 1332–1344, Mar.2008.
    [40] C.Poojari, D.Xiao, V. S.Batista, and B.Strodel, “Membrane permeation induced by aggregates of human islet amyloid polypeptides,” Biophys. J., vol. 105, no. 10, pp. 2323–2332, 2013.
    [41] P.Pieranski, “Two-dimensional interfacial colloidal crystals,” Phys. Rev. Lett., vol. 45, no. 7, pp. 569–572, 1980.
    [42] H.Lehle and M.Oettel, “Stability and interactions of nanocolloids at fluid interfaces: Effects of capillary waves and line tensions,” J. Phys. Condens. Matter, vol. 20, no. 40, 2008.
    [43] F.Bresme and M.Oettel, “Nanoparticles at fluid interfaces,” J. Phys. Condens. Matter, vol. 19, no. 41, 2007.
    [44] J. S. (John S.Rowlinson andB.Widom, Molecular theory of capillarity. Dover Publications, 2002.
    [45] L.Schimmele, M.Naplórkowski, and S.Dietrich, “Conceptual aspects of line tensions,” J. Chem. Phys., vol. 127, no. 16, p. 164715, Oct.2007.
    [46] F.Bresme and N.Quirke, “Computer simulation of wetting and drying of spherical particulates at a liquid-vapor interface,” J. Chem. Phys., vol. 110, no. 7, pp. 3536–3547, Feb.1999.
    [47] F.Bresme and N.Quirke, “Nanoparticulates at liquid/liquid interfaces,” 1999.
    [48] R.Aveyard and J. H.Clint, “Particle wettability and line tension,” J. Chem. Soc. - Faraday Trans., vol. 92, no. 1, pp. 85–89, Jan.1996.
    [49] M.Oettel, A.Domínguez, and S.Dietrich, “Effective capillary interaction of spherical particles at fluid interfaces.”
    [50] Y.Tang and S.Cheng, “Capillary forces on a small particle at a liquid-vapor interface: Theory and simulation,” Phys. Rev. E, vol. 98, no. 3, p. 32802, 2018.
    [51] J. F.Joanny and P. G.DeGennes, “A model for contact angle hysteresis,” J. Chem. Phys., vol. 81, no. 1, pp. 552–562, Jul.1984.
    [52] “The Protein Data Bank.,” Methods Biochem. Anal., vol. 44, pp. 181–198, 2003.
    [53] W.Humphrey, A.Dalke, andK.Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., vol. 14, no. 1, pp. 33–38, Feb.1996.
    [54] T.Gallagher, P.Alexander, P.Bryan, and G. L.Gilliland, “Two Crystal Structures of the B1 Immunoglobulin-Binding Domain of Streptococcal Protein G and Comparison with NMR,” Biochemistry, vol. 33, no. 15, pp. 4721–4729, Apr.1994.
    [55] R.Nelson et al., “Structure of the cross-β spine of amyloid-like fibrils,” Nature, vol. 435, no. 7043, pp. 773–778, 2005.
    [56] P.Krotee et al., “Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity,” Elife, vol. 6, Jan.2017.
    [57] S.Pronk et al., “GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics, vol. 29, no. 7, pp. 845–854, 2013.
    [58] M. J.Abraham et al., “Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX, vol. 1–2, pp. 19–25, Sep.2015.
    [59] A. S.Ulrich, M.Sami, and A.Watts, “Hydration of DOPC bilayers by differential scanning calorimetry,” BBA - Biomembr., 1994.
    [60] G. J.Martyna, D. J.Tobias, and M. L.Klein, “Constant pressure molecular dynamics algorithms,” J. Chem. Phys., vol. 101, no. 5, pp. 4177–4189, Sep.1994.
    [61] G. J.Martyna, M. L.Klein, and M.Tuckerman, “Nosé-Hoover chains: The canonical ensemble via continuous dynamics,” J. Chem. Phys., vol. 97, no. 4, pp. 2635–2643, Aug.1992.
    [62] M.Parrinello and A.Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys., vol. 52, no. 12, pp. 7182–7190, Dec.1981.
    [63] A. E.Aliev, M.Kulke, H. S.Khaneja, V.Chudasama, T. D.Sheppard, and R. M.Lanigan, “Motional timescale predictions by molecular dynamics simulations: Case study using proline and hydroxyproline sidechain dynamics,” Proteins Struct. Funct. Bioinforma., vol. 82, no. 2, pp. 195–215, Feb.2014.
    [64] I.Ermilova and A. P.Lyubartsev, “Extension of the slipids force field to polyunsaturated lipids,” J. Phys. Chem. B, vol. 120, no. 50, pp. 12826–12842, 2016.
    [65] W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, and M. L.Klein, “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys., vol. 79, no. 2, pp. 926–935, Jul.1983.
    [66] U.Essmann, L.Perera, M. L.Berkowitz, T.Darden, H.Lee and L. G.Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys., vol. 103, no. 19, pp. 8577–8593, Nov.1995.
    [67] B.Hess, H.Bekker, H. J. C.Berendsen, and J. G. E. M.Fraaije, “LINCS: A linear constraint solver for molecular simulations,” J. Comput. Chem., vol. 18, no. 12, pp. 1463–1472, Sep.1997.
    [68] R.Wolfenden, L.Andersson, P. M.Cullis, and C. C. B.Southgate, “Affinities of amino acid side-chains for solvent water.,” Biochemistry, vol. 20, no. 1977, pp. 849–855, 1981.
    [69] G. M.Torrie and J. P.Valleau, “Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling,” J. Comput. Phys., vol. 23, no. 2, pp. 187–199, Feb.1977.
    [70] N. K.Banavali and B.Roux, “Free energy landscape of A-DNA to B-DNA conversion in aqueous solution,” J. Am. Chem. Soc., vol. 127, no. 18, pp. 6866–6876, May2005.
    [71] S.Kumar, D.Bouzida, R. H.Swendsen andJ. M.Rosenbergl, “The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method.”
    [72] M.Souaille and B.Roux, “Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations,” Comput. Phys. Commun., vol. 135, no. 1, pp. 40–57, Mar.2001.
    [73] A.Grossfield, “An implementation of WHAM: the Weighted Histogram Analysis Method Version 2.0.9.”
    [74] B.Roux, “The calculation of the potential of mean force using computer simulations,” Comput. Phys. Commun., vol. 91, no. 1–3, pp. 275–282, Sep.1995.
    [75] R.Wolfenden, “Interaction of the Peptide Bond with Solvent Water: A Vapor Phase Analysis’!”
    [76] G.König, S.Bruckner, and S.Boresch, “Absolute hydration free energies of blocked amino acids: Implications for protein solvation and stability,” Biophys. J., vol. 104, no. 2, pp. 453–462, 2013.
    [77] A.Shrake and J. A.Rupley, “Environment and exposure to solvent of protein atoms. Lysozyme and insulin,” J. Mol. Biol., vol. 79, no. 2, pp. 351–371, Sep.1973.
    [78] F.Eisenhaber, P.Lijnzaad, P.Argos, C.Sander, and M.Scharf, “The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies,” J. Comput. Chem., vol. 16, no. 3, pp. 273–284, Mar.1995.
    [79] F.Chen and P. E.Smith, “Simulated surface tensions of common water models,” J. Chem. Phys., vol. 126, no. 22, 2007.
    [80] J.Gullingsrud, A.Babakhani and J. A.Mccammon, “Molecular Simulation Computational investigation of pressure profiles in lipid bilayers with embedded proteins Computational investigation of pressure profiles in lipid bilayers with embedded proteins,” 2007.
    [81] R. S.Cantor, “The lateral pressure profile in membranes: A physical mechanism of general anesthesia,” Biochemistry, vol. 36, no. 9, pp. 2339–2344, Mar.1997.
    [82] E.Lindahl and O.Edholm, “Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations,” J. Chem. Phys., vol. 113, no. 9, pp. 3882–3893, Sep.2000.
    [83] J. H.Irving and J. G.Kirkwood, “The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics,” J. Chem. Phys., vol. 18, no. 6, pp. 817–829, Jun.1950.
    [84] E. B.Tadmor and R. E.Miller, Modeling materials : continuum, atomistic, and multiscale techniques. Cambridge University Press, 2011.
    [85] A. P.Thompson, S. J.Plimpton, and W.Mattson, “General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions,” J. Chem. Phys., vol. 131, no. 15, p. 154107, Oct.2009.
    [86] O. H. S.Ollila, H. J.Risselada, M.Louhivuori, E.Lindahl, I.Vattulainen, and S. J.Marrink, “3D Pressure field in lipid membranes and membrane-protein complexes,” Phys. Rev. Lett., vol. 102, no. 7, pp. 1–4, 2009.
    [87] A. D.MacKerell et al., “All-atom empirical potential for molecular modeling and dynamics studies of proteins,” J. Phys. Chem. B, vol. 102, no. 18, pp. 3586–3616, Apr.1998.
    [88] A. D.Mackerell, M.Feig, and C. L.Brooks, “Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulation,” J. Comput. Chem., vol. 25, no. 11, pp. 1400–1415, Aug.2004.
    [89] P.Hortschansky, V.Schroeckh, T.Christopeit, G.Zandomeneghi, and M.Fändrich, “The aggregation kinetics of Alzheimer’s β-amyloid peptide is controlled by stochastic nucleation,” Protein Sci., vol. 14, no. 7, pp. 1753–1759, Jul.2005.
    [90] F.Bemporad, Folding and aggregation studies in the acylphosphatase-like family, vol. 6. Florence: Firenze University Press, 2009.

    下載圖示 校內:2025-08-11公開
    校外:2025-08-11公開
    QR CODE