| 研究生: |
遲尚毅 Chih, Shang-Yi |
|---|---|
| 論文名稱: |
利用光電導設計結合PSLC製作先進可光電雙調控之智慧窗戶研究 Studies of advanced electro-optically controllable smart window based on PSLC cell with a photoconductive device |
| 指導教授: |
傅永貴
Fuh, Ying-Guey |
| 共同指導教授: |
許家榮
Sheu, Chia Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 液晶 、PSLC 、光電導 、酞菁氧钛 、智慧窗戶 |
| 外文關鍵詞: | smart window, TiOPc, liquid crystal, PSLC, electro-optically |
| 相關次數: | 點閱:71 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要使用reverse mode的Polymer-Stabilized Liquid Crystal (PSLC) cell串聯搭配光敏裝置,讓具電壓調控功能的PSLC cell,藉由與光敏裝置之間在照光前後的阻抗變化關係,產生光調控的功能,製作出可主動式電壓調控以及被動式光調控的智慧窗戶。在固定外加電壓的情況下,基於歐姆定律 V=IR 和電壓分配定則Vinput=VPSLC+VLDR,光導裝置在暗環境中處於高電阻的狀態,樣品呈現穩定的透明態,之後隨著環境光增強,光導裝置的電阻大幅下降導致PSLC cell的電壓上升轉變為散射態,其散射程度與環境光強度成正比,展現出多灰階調控效果。
本文實驗分為兩個部分,第一部分將PSLC cell外接光敏電阻(Light-Dependent Resistor, LDR)製作LDR-PSLC smart window;第二部分則採用有機光導體材料TiOPc,嘗試調配出最佳比例的TiOPc溶液,利用特殊的薄膜電極設計,以全溶液製程的方式製作TiOPc-PSLC smart window。光電量測結果顯示出兩者皆有顯著的電及光雙調控效果,並擁有快速的響應時間以及長久的穩定性。最後,我們利用戶外陽光進行驅動,成功以陽光驅動樣品。由實驗結果可知,本文的液晶樣品非常適合應用於智慧窗戶上。
In this study, we develop two types of electro-optically controllable smart window based on a reverse mode Polymer-Stabilized Liquid Crystal (PSLC). The first one is LDR (Light-Dependent Resistor)-PSLC smart window, and the other is TiOPc-PSLC smart window. The experimental results show that they present a stable highly transparent state at low ambient light, and can be fast switched to multi-gray transmission states under a biased applied voltage (~20 V) controlled by the ambient light intensity.
[1] Okahata Yoshio, et al. "Functional capsule membranes. Part 22. The electrical breakdown and permeability control of a bilayer-corked capsule membrane in an external electric field." Journal of the American Chemical Society, 108.11 (1986): 2863-2869.
[2] Gong, J. P., T. Nitta, and Y. Osada. "Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model." The Journal of Physical Chemistry, 98.38 (1994): 9583-9587.
[3] Filipcsei G., J. Feher, and M. Zrınyi. "Electric field sensitive neutral polymer gels." Journal of Molecular Structure, 554.1 (2000): 109-117.
[4] Kumar Ashok, et al. "Smart polymers: physical forms and bioengineering applications." Progress in Polymer Science, 32.10 (2007): 1205-1237
[5] Ikeda Tomiki, and Osamu Tsutsumi. "Optical switching and image storage by means of azobenzene liquid-crystal films." Science, 268.5219 (1995): 1873.
[6] Van Oosten, Casper L., Cees WM Bastiaansen, and Dirk J. Broer. "Printed artificial cilia from liquid-crystal network actuators modularly driven by light." Nature materials, 8.8 (2009): 677-682.
[7] Serak Svetlana, et al. "Liquid crystalline polymer cantilever oscillators fueled by light." Soft Matter, 6.4 (2010): 779-783.
[8] Gohy Jean-François, and Yue Zhao. "Photo-responsive block copolymer micelles: design and behavior." Chemical Society Reviews, 42.17 (2013): 7117-7129.
[9] Lee Elaine, et al. "Tilted pillars on wrinkled elastomers as a reversibly tunable optical window." Advanced Materials, 26.24 (2014): 4127-4133.
[10] Kwon Hyun‐Keun, et al. "Optically switchable smart windows with integrated photovoltaic devices." Advanced Energy Material,s 5.3 (2015)
[11] Bromberg Lev E., and Eyal S. Ron. "Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery." Advanced drug delivery reviews, 31.3 (1998): 197-221.
[12] Gibson Matthew I., and Rachel K. O'Reilly. "To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles." Chemical society reviews, 42.17 (2013): 7204-7213.
[13] Roy Debashish, William LA Brooks, and Brent S. Sumerlin. "New directions in thermoresponsive polymers." Chemical Society Reviews, 42.17 (2013): 7214-7243.
[14] Sun Jian, et al. "Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition." Smart Materials and Structures, 23.12 (2014): 125038.
[15] Khaligh Hadi Hosseinzadeh, et al. "Silver nanowire transparent electrodes for liquid crystal-based smart windows." Solar Energy Materials and Solar Cells, 132 (2015): 337-341.
[16] Kim Yura, et al. "Optical properties and optimized conditions for polymer dispersed liquid crystal containing UV curable polymer and nematic liquid crystal." Current Applied Physics, 15.3 (2015): 292-297
[17] Fuh Andy Ying-Guey, et al. "Electrically controllable smart window with greyscale based on polymer-stabilised cholesteric texture films." Liquid Crystals, 43.12 (2016): 1784-1790
[18] Dierking Ingo. "Polymer network–stabilized liquid crystals." Advanced Materials, 12.3 (2000): 167-181.
[19] Sonin A. S., and N. A. Churochkina. "Liquid crystals stabilized by polymer networks." Polymer Science Series A, 52.5 (2010): 463-482.
[20] Van Boxtel, M. C. W., et al. "Polymer‐Filled Nematics: A New Class of Light‐Scattering Materials for Electro‐Optical Switches." Advanced Materials, 12.10 (2000): 753-757.
[21] Chen Yuan-Di, et al. "Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film." Journal of Physics D: Applied Physics, 44.21 (2011): 215304.
[22] Liu Yen-Chen, Ko-Ting Cheng, and Andy Ying-Guey Fuh. "Isothermal electrically and optically induced phase separation of liquid crystal and poly (N-vinylcarbazole) films." Optics express, 22.17 (2014): 21004-21011.
[23] Fuh Andy Ying-Guey, Yuan-Di Chen, and Ko-Ting Cheng. "Poly (N-vinylcarbazole) film-based liquid crystal films." Molecular Crystals and Liquid Crystals, 596.1 (2014): 135-151.
[24] Chen Yuan-Di, Andy Ying-Guey Fuh, and Ko-Ting Cheng. "Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly (N-vinylcarbazole) films-coated liquid crystal cell." Optics express, 20.24 (2012): 26252-26260.
[25] Chen Yuan-Di, Andy Ying-Guey Fuh, and Ko-Ting Cheng. "Particular thermally induced phase separation of liquid crystal and poly (N-vinyl carbazole) films and its application." Optics Express, 20.15 (2012): 16777-16784.
[26] Chen Yuan-Di, et al. "Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly (N-vinyl carbazole) films." Optics express, 19.8 (2011): 7553-7558.
[27] Nakanishi Yohei, et al. "Relation between monomer structure and image sticking phenomenon of polymer-sustained-alignment liquid crystal displays." Japanese Journal of Applied Physics, 50.5R (2011): 051702.
[28]Nishikawa Michinori, et al. "Properties of voltage holding ratios of liquid crystal cells using organic-solvent-soluble polyimide alignment films." Japanese journal of applied physics, 33.8A (1994): L1113.
[29] Mizusaki Masanobu, et al. "Analysis of ion behavior affecting voltage holding property of liquid crystal displays." Japanese Journal of Applied Physics, 51.1R (2011): 014102.
[30] Mizusaki Masanobu, et al. "Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials." Journal of applied physics, 102.1 (2007): 014904.
[31] Gosse B., and J. P. Gosse. "Degradation of liquid crystal devices under dc excitation and their electrochemistry." Journal of Applied Electrochemistry, 6.6 (1976): 515-519.
[32] Kelker, Hans. "History of liquid crystals." Molecular Crystals and Liquid Crystals, 21.1 (1973): 1-48.
[33] Francescangeli O, et al. "Light-induced surface sliding of the nematic director in liquid crystals." Physical review letters, 82.9 (1999): 1855.
[34] Bahadur Birendra. Liquid crystals: applications and uses. World scientific, 1990.
[35] Yeh Pochi, and Claire Gu. Optics of liquid crystal displays. John Wiley & Sons, 2010.
[36] 松本正一、角田示良和著,劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出本 (1996).
[37] Wojtowicz Peter J., Ping Sheng, and E. B. Priestley, eds. Introduction to liquid crystals. New York: Plenum Press, 1975.
[38] 傅永貴,上課講義,“液晶材料及顯示技術”(1995).
[39] P.G de Gennes and J.Prost,“The Physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993).
[40] 液晶應用技術研究會 編著,“最新液晶應用技術”, 建興出版社 (1997).
[41] 顧鴻壽 編著,“光電液晶平面顯示器-第二版”, 新文京開發出版社 (2004).
[42] 苗村 省平 著, 陳建銘 譯,“液晶顯示器技術入門”, 全華圖書 (2005).
[43] Statman David, et al. "Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order." Physical Review E, 75.2 (2007): 021703.
[44] Lee C-R., et al. "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films." Applied physics letters”, 83.21 (2003): 4285-4287.
[45] Reinitzer F. "Beiträge zur kenntniss des cholesterins." Monatshefte für Chemie/Chemical Monthly, 9.1 (1888): 421-441.
[46] Khoo Iam-Choon. " Liquid crystals: physical properties and nonlinear optical phenomena", Vol. 64. John Wiley & Sons, 2007.
[47] A. Yariv, " Optical Electronics in Modern Communications" , Oxford University Press, New York (1997).
[48] Bahr Christian, and Heinz-Siegfried Kitzerow. " Chirality in liquid crystals" . Heidelberg: Springer, 2001.
[49] Yang. Deng-Ke, et al. "Cholesteric reflective display: drive scheme and contrast." Applied physics letters, 64.15 (1994): 1905-1907.
[50] Bahadur Birendra. " Liquid crystals: applications and uses" . World scientific, 1990.
[51] A.Yariv,”Quantum Elecronics”, Wiley, New York (1988).
[52] Chandrasekhar S., B. K. Sadashiva, and K. A. Suresh. "Liquid crystals of disc-like molecules." Pramana,, 9.5 (1977): 471-480.
[53] Chandrasekhar S. "Recent developments in the physics of liquid crystals." Contemporary Physics, 29.6 (1988): 527-558.
[54] Blinov Lev Mikhailovich, and Vladimir G. Chigrinov. "Electrooptical Effects Due to the Uniform Distortion of Nematic Liquid Crystals." Electrooptic Effects in Liquid Crystal Materials. Springer New York, 1994. 133-234.
[55] Lee Hyoung-Kwan, et al. "All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal." Chemistry of materials, 10.5 (1998): 1402-1407.
[56] 朱自強, 王仕璠, 蘇顯渝 編著,“現代光學教程”, 四川大學出版社, 成都(1990).
[57] Collings Peter J., and Michael Hird. Introduction to liquid crystals: chemistry and physics. CRC Press, 1997.
[58] Marinelli M., and F. Mercuri. "Effects of fluctuations in the orientational order parameter in the cyanobiphenyl (n CB) homologous series." Physical Review E, 61.2 (2000): 1616.
[59] 黃子強 編著,“液晶顯示原理”, 國防工業出版社, 北京(2006).
[60] 王珍珍, 碩士論文,“混合聚亞醯胺配向膜調控液晶預傾角之研究及應用”,國立成功大學物理研究所 (1998).
[61] Yoon HyungGuen, et al. "Homogeneous and homeotropic alignment of bent-core uniaxial and biaxial nematic liquid crystals." Soft Matter, 7.19 (2011): 8770-8775.
[62] Berreman Dwight W. "Solid surface shape and the alignment of an adjacent nematic liquid crystal." Physical review letters, 28.26 (1972): 1683.
[63] The Nobel Prize in Physics 1921. Nobel Foundation.
[64] Petrova-Koch Vesselinka, Rudolf Hezel, and Adolf Goetzberger, eds. High-efficient low-cost photovoltaics: recent developments. Springer (2008).
[65] Smith Willoughby. "Effect of light on selenium during the passage of an electric current." SPIE MILESTONE SERIES MS 56 (1992).
[66] 施敏 著, 黃調元 譯, “半導體元件物理與製作技術”, 國立交通大學出版社 (2002).
[67] 經濟部標準檢驗局 發行, “CNS台灣國家照度標準” (1987).
[68] Palmer James M., and Lewis Carroll. "Radiometry and photometry FAQ." URL:https://employeepages.scad.edu/~kwitte/documents/Photometry_FAQ " (1999).
[69] Yang Deng-Ke. Fundamentals of liquid crystal devices. John Wiley & Sons, 2014.
[70] Odian George. Principles of polymerization. John Wiley & Sons, 2004.
[71] 德鍵電子工業股份有限公司 發行, “CDS光敏電阻器產品目錄” (2017).
[72] Chen Kuan-Ting, et al. "Development of an optically modulated piezoelectric sensor/actuator based on titanium oxide phthalocyanine thin film." Smart Materials and Structures, 21.11 (2012): 115025.
[73] Zhou Shuquin, et al. "Photoconduction and application of oxotitanium phthalocyanine dual-layered thin films." Thin Solid Films, 375.1 (2000): 263-266.
[74] Park Jaehong, Obadiah G. Reid, and Garry Rumbles. "Photoinduced Carrier Generation and Recombination Dynamics of a Trilayer Cascade Heterojunction Composed of Poly (3-hexylthiophene), Titanyl Phthalocyanine, and C60." The Journal of Physical Chemistry B, 119.24 (2015): 7729-7739.
[75] Chang Wen-Chi, et al. "A photo-sensitive piezoelectric composite material of poly (vinylidene fluoride-trifluoroethylene) and titanium oxide phthalocyanine." Materials Chemistry and Physics, 149 (2015): 254-260.
[76] Kim Young-Keun, et al. "Synthesis, characterization, and photovoltaic properties of soluble TiOPc derivatives." International journal of molecular sciences, 9.12 (2008): 2745-2756.
[77] Lin PoHan, Y. H. Hsu, and C. K. Lee. "Universal lab on a smartphone: a research of TiOPc thin film as a light dependence electrode." SPIE BiOS. International Society for Optics and Photonics, 2014.
[78] Li Yongfang. Organic optoelectronic materials. Berlin: Springer, 2015.
[79] Shirakawa Hideki, et al. "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x." Journal of the Chemical Society, Chemical Communications 16 (1977): 578-580.
[80] Rafique Saqib, et al. "Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer." Scientific reports, 7 (2017).
[81] Sun Kuan, et al. "Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices." Journal of Materials Science: Materials in Electronics, 26.7 (2015): 4438-4462.
[82] Pasha Apsar, et al. "Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films." Journal of Materials Science: Materials in Electronics, 27.8 (2016): 8332-8339.
[83] Kim Yong Hyun, et al. "Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells." Advanced Functional Materials, 21.6 (2011): 1076-1081.
[84] Tait Jeffrey G., et al. "Spray coated high-conductivity PEDOT: PSS transparent electrodes for stretchable and mechanically-robust organic solar cells." Solar Energy Materials and Solar Cells, 110 (2013): 98-106.
[85] 陳奕達, 聚乙烯基咔唑薄膜液晶元件之光電特性之研究, 國立成功大學物理所碩士論文(2015).
[86] Ren Hongwen, Su Xu, and Shin-Tson Wu. "Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time." Optics letters, 38.16 (2013): 3144-3147.