簡易檢索 / 詳目顯示

研究生: 遲尚毅
Chih, Shang-Yi
論文名稱: 利用光電導設計結合PSLC製作先進可光電雙調控之智慧窗戶研究
Studies of advanced electro-optically controllable smart window based on PSLC cell with a photoconductive device
指導教授: 傅永貴
Fuh, Ying-Guey
共同指導教授: 許家榮
Sheu, Chia Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 液晶PSLC光電導酞菁氧钛智慧窗戶
外文關鍵詞: smart window, TiOPc, liquid crystal, PSLC, electro-optically
相關次數: 點閱:71下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要使用reverse mode的Polymer-Stabilized Liquid Crystal (PSLC) cell串聯搭配光敏裝置,讓具電壓調控功能的PSLC cell,藉由與光敏裝置之間在照光前後的阻抗變化關係,產生光調控的功能,製作出可主動式電壓調控以及被動式光調控的智慧窗戶。在固定外加電壓的情況下,基於歐姆定律 V=IR 和電壓分配定則Vinput=VPSLC+VLDR,光導裝置在暗環境中處於高電阻的狀態,樣品呈現穩定的透明態,之後隨著環境光增強,光導裝置的電阻大幅下降導致PSLC cell的電壓上升轉變為散射態,其散射程度與環境光強度成正比,展現出多灰階調控效果。
    本文實驗分為兩個部分,第一部分將PSLC cell外接光敏電阻(Light-Dependent Resistor, LDR)製作LDR-PSLC smart window;第二部分則採用有機光導體材料TiOPc,嘗試調配出最佳比例的TiOPc溶液,利用特殊的薄膜電極設計,以全溶液製程的方式製作TiOPc-PSLC smart window。光電量測結果顯示出兩者皆有顯著的電及光雙調控效果,並擁有快速的響應時間以及長久的穩定性。最後,我們利用戶外陽光進行驅動,成功以陽光驅動樣品。由實驗結果可知,本文的液晶樣品非常適合應用於智慧窗戶上。

    In this study, we develop two types of electro-optically controllable smart window based on a reverse mode Polymer-Stabilized Liquid Crystal (PSLC). The first one is LDR (Light-Dependent Resistor)-PSLC smart window, and the other is TiOPc-PSLC smart window. The experimental results show that they present a stable highly transparent state at low ambient light, and can be fast switched to multi-gray transmission states under a biased applied voltage (~20 V) controlled by the ambient light intensity.

    摘要 I Extended Abstract II 誌謝 VII 目錄 IX 表目錄 XIII 圖目錄 XIV 符號 XX 第一章 緒論 1 1-1 前言 1 1-2 動機 2 1-3 論文結構 3 第二章 液晶簡介 5 2-1 液晶的發現與簡介 5 2-2 液晶的分類 6 2-2-1 向列型液晶 (Nematics) 8 2-2-2 膽固醇液晶(Cholesterics) 9 2-2-3 層列型液晶(Smectics) 12 2-2-4 圓盤狀液晶(Discotics) 13 2-3 液晶物理 15 2-3-1 液晶的雙折射性 15 2-3-2 電場對液晶的影響 19 2-3-3 連續彈性體理論 20 2-3-4 Fréedericksz Transition 22 2-3-5 溫度對液晶折射率之影響 23 第三章 相關基礎理論 24 3-1 液晶配向 24 3-1-1 水平及垂直配向 24 3-1-2 溝槽理論 26 3-2 光電效應 27 3-2-1 外光電效應 27 3-2-2 光伏效應 28 3-2-3 光電導效應 28 3-3 光照度 31 3-4 PSLC (Polymer-Stablized Liquid Crystal) 33 3-5 高分子聚合 37 第四章 樣品製作與光路架設 40 4-1 材料介紹 40 4-1-1 向列型液晶 40 4-1-2 高分子液晶 RM257 41 4-1-3 光啟始劑 42 4-1-4 光敏電阻(LDR) 43 4-1-5 酞菁氧鈦(TiOPc) 45 4-1-6 PEDOT:PSS 47 4-2 樣品製作 50 4-2-1 ITO玻璃裁切及清洗 50 4-2-2 ITO玻璃基板表面配向 51 4-2-3 TiOPc溶液製程 51 4-2-4 實驗一樣品製作 52 4-2-5 實驗二樣品製作 55 4-3 實驗架設 58 4-3-1 穿透度對電壓曲線量測之光路架設 58 4-3-2 穩定度量測之光路架設 59 4-3-3 響應時間量測之光路架設 59 4-3-4 樣品透明度拍攝之光路架設 60 第五章 實驗結果與討論 62 5-1 LDR-PSLC智慧窗戶 62 5-1-1 PSLC液晶盒參數設計 62 5-1-2 光敏電阻的選擇 64 5-1-3 LDR-PSLC智慧窗戶之光電特性量測 66 5-1-4 LDR-PSLC智慧窗戶透明度之實際照片拍攝 69 5-2 TIOPC-PSLC智慧窗戶 71 5-2-1 TiOPc溶劑選擇與配製 71 5-2-2 TiOPc-PSLC智慧窗戶之參數最佳化 75 5-2-3 TiOPc-PSLC智慧窗戶之光電特性量測 79 5-2-4 TiOPc-PSLC智慧窗戶透明度之實際照片拍攝 83 第六章 總結與未來展望 86 6-1 總結 86 6-2 未來展望 88 參考文獻 89

    [1] Okahata Yoshio, et al. "Functional capsule membranes. Part 22. The electrical breakdown and permeability control of a bilayer-corked capsule membrane in an external electric field." Journal of the American Chemical Society, 108.11 (1986): 2863-2869.
    [2] Gong, J. P., T. Nitta, and Y. Osada. "Electrokinetic modeling of the contractile phenomena of polyelectrolyte gels. One-dimensional capillary model." The Journal of Physical Chemistry, 98.38 (1994): 9583-9587.
    [3] Filipcsei G., J. Feher, and M. Zrınyi. "Electric field sensitive neutral polymer gels." Journal of Molecular Structure, 554.1 (2000): 109-117.
    [4] Kumar Ashok, et al. "Smart polymers: physical forms and bioengineering applications." Progress in Polymer Science, 32.10 (2007): 1205-1237
    [5] Ikeda Tomiki, and Osamu Tsutsumi. "Optical switching and image storage by means of azobenzene liquid-crystal films." Science, 268.5219 (1995): 1873.
    [6] Van Oosten, Casper L., Cees WM Bastiaansen, and Dirk J. Broer. "Printed artificial cilia from liquid-crystal network actuators modularly driven by light." Nature materials, 8.8 (2009): 677-682.
    [7] Serak Svetlana, et al. "Liquid crystalline polymer cantilever oscillators fueled by light." Soft Matter, 6.4 (2010): 779-783.
    [8] Gohy Jean-François, and Yue Zhao. "Photo-responsive block copolymer micelles: design and behavior." Chemical Society Reviews, 42.17 (2013): 7117-7129.
    [9] Lee Elaine, et al. "Tilted pillars on wrinkled elastomers as a reversibly tunable optical window." Advanced Materials, 26.24 (2014): 4127-4133.
    [10] Kwon Hyun‐Keun, et al. "Optically switchable smart windows with integrated photovoltaic devices." Advanced Energy Material,s 5.3 (2015)
    [11] Bromberg Lev E., and Eyal S. Ron. "Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery." Advanced drug delivery reviews, 31.3 (1998): 197-221.
    [12] Gibson Matthew I., and Rachel K. O'Reilly. "To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles." Chemical society reviews, 42.17 (2013): 7204-7213.
    [13] Roy Debashish, William LA Brooks, and Brent S. Sumerlin. "New directions in thermoresponsive polymers." Chemical Society Reviews, 42.17 (2013): 7214-7243.
    [14] Sun Jian, et al. "Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition." Smart Materials and Structures, 23.12 (2014): 125038.
    [15] Khaligh Hadi Hosseinzadeh, et al. "Silver nanowire transparent electrodes for liquid crystal-based smart windows." Solar Energy Materials and Solar Cells, 132 (2015): 337-341.
    [16] Kim Yura, et al. "Optical properties and optimized conditions for polymer dispersed liquid crystal containing UV curable polymer and nematic liquid crystal." Current Applied Physics, 15.3 (2015): 292-297
    [17] Fuh Andy Ying-Guey, et al. "Electrically controllable smart window with greyscale based on polymer-stabilised cholesteric texture films." Liquid Crystals, 43.12 (2016): 1784-1790
    [18] Dierking Ingo. "Polymer network–stabilized liquid crystals." Advanced Materials, 12.3 (2000): 167-181.
    [19] Sonin A. S., and N. A. Churochkina. "Liquid crystals stabilized by polymer networks." Polymer Science Series A, 52.5 (2010): 463-482.
    [20] Van Boxtel, M. C. W., et al. "Polymer‐Filled Nematics: A New Class of Light‐Scattering Materials for Electro‐Optical Switches." Advanced Materials, 12.10 (2000): 753-757.
    [21] Chen Yuan-Di, et al. "Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly (N-vinyl carbazole) film." Journal of Physics D: Applied Physics, 44.21 (2011): 215304.
    [22] Liu Yen-Chen, Ko-Ting Cheng, and Andy Ying-Guey Fuh. "Isothermal electrically and optically induced phase separation of liquid crystal and poly (N-vinylcarbazole) films." Optics express, 22.17 (2014): 21004-21011.
    [23] Fuh Andy Ying-Guey, Yuan-Di Chen, and Ko-Ting Cheng. "Poly (N-vinylcarbazole) film-based liquid crystal films." Molecular Crystals and Liquid Crystals, 596.1 (2014): 135-151.
    [24] Chen Yuan-Di, Andy Ying-Guey Fuh, and Ko-Ting Cheng. "Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly (N-vinylcarbazole) films-coated liquid crystal cell." Optics express, 20.24 (2012): 26252-26260.
    [25] Chen Yuan-Di, Andy Ying-Guey Fuh, and Ko-Ting Cheng. "Particular thermally induced phase separation of liquid crystal and poly (N-vinyl carbazole) films and its application." Optics Express, 20.15 (2012): 16777-16784.
    [26] Chen Yuan-Di, et al. "Polarization rotators fabricated by thermally-switched liquid crystal alignments based on rubbed poly (N-vinyl carbazole) films." Optics express, 19.8 (2011): 7553-7558.
    [27] Nakanishi Yohei, et al. "Relation between monomer structure and image sticking phenomenon of polymer-sustained-alignment liquid crystal displays." Japanese Journal of Applied Physics, 50.5R (2011): 051702.
    [28]Nishikawa Michinori, et al. "Properties of voltage holding ratios of liquid crystal cells using organic-solvent-soluble polyimide alignment films." Japanese journal of applied physics, 33.8A (1994): L1113.
    [29] Mizusaki Masanobu, et al. "Analysis of ion behavior affecting voltage holding property of liquid crystal displays." Japanese Journal of Applied Physics, 51.1R (2011): 014102.
    [30] Mizusaki Masanobu, et al. "Generation mechanism of residual direct current voltage in a liquid crystal display and its evaluation parameters related to liquid crystal and alignment layer materials." Journal of applied physics, 102.1 (2007): 014904.
    [31] Gosse B., and J. P. Gosse. "Degradation of liquid crystal devices under dc excitation and their electrochemistry." Journal of Applied Electrochemistry, 6.6 (1976): 515-519.
    [32] Kelker, Hans. "History of liquid crystals." Molecular Crystals and Liquid Crystals, 21.1 (1973): 1-48.
    [33] Francescangeli O, et al. "Light-induced surface sliding of the nematic director in liquid crystals." Physical review letters, 82.9 (1999): 1855.
    [34] Bahadur Birendra. Liquid crystals: applications and uses. World scientific, 1990.
    [35] Yeh Pochi, and Claire Gu. Optics of liquid crystal displays. John Wiley & Sons, 2010.
    [36] 松本正一、角田示良和著,劉瑞祥譯,“液晶之基礎與應用”,國立編譯館出本 (1996).
    [37] Wojtowicz Peter J., Ping Sheng, and E. B. Priestley, eds. Introduction to liquid crystals. New York: Plenum Press, 1975.
    [38] 傅永貴,上課講義,“液晶材料及顯示技術”(1995).
    [39] P.G de Gennes and J.Prost,“The Physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993).
    [40] 液晶應用技術研究會 編著,“最新液晶應用技術”, 建興出版社 (1997).
    [41] 顧鴻壽 編著,“光電液晶平面顯示器-第二版”, 新文京開發出版社 (2004).
    [42] 苗村 省平 著, 陳建銘 譯,“液晶顯示器技術入門”, 全華圖書 (2005).
    [43] Statman David, et al. "Photoinduced reorientation of nematic liquid crystals doped with an azo dye: A dynamic and steady-state study of reorientation and loss of liquid crystal order." Physical Review E, 75.2 (2007): 021703.
    [44] Lee C-R., et al. "Electrically switchable and thermally erasable biphotonic holographic gratings in dye-doped liquid crystal films." Applied physics letters”, 83.21 (2003): 4285-4287.
    [45] Reinitzer F. "Beiträge zur kenntniss des cholesterins." Monatshefte für Chemie/Chemical Monthly, 9.1 (1888): 421-441.
    [46] Khoo Iam-Choon. " Liquid crystals: physical properties and nonlinear optical phenomena", Vol. 64. John Wiley & Sons, 2007.
    [47] A. Yariv, " Optical Electronics in Modern Communications" , Oxford University Press, New York (1997).
    [48] Bahr Christian, and Heinz-Siegfried Kitzerow. " Chirality in liquid crystals" . Heidelberg: Springer, 2001.
    [49] Yang. Deng-Ke, et al. "Cholesteric reflective display: drive scheme and contrast." Applied physics letters, 64.15 (1994): 1905-1907.
    [50] Bahadur Birendra. " Liquid crystals: applications and uses" . World scientific, 1990.
    [51] A.Yariv,”Quantum Elecronics”, Wiley, New York (1988).
    [52] Chandrasekhar S., B. K. Sadashiva, and K. A. Suresh. "Liquid crystals of disc-like molecules." Pramana,, 9.5 (1977): 471-480.
    [53] Chandrasekhar S. "Recent developments in the physics of liquid crystals." Contemporary Physics, 29.6 (1988): 527-558.
    [54] Blinov Lev Mikhailovich, and Vladimir G. Chigrinov. "Electrooptical Effects Due to the Uniform Distortion of Nematic Liquid Crystals." Electrooptic Effects in Liquid Crystal Materials. Springer New York, 1994. 133-234.
    [55] Lee Hyoung-Kwan, et al. "All-optically controllable polymer/liquid crystal composite films containing the azobenzene liquid crystal." Chemistry of materials, 10.5 (1998): 1402-1407.
    [56] 朱自強, 王仕璠, 蘇顯渝 編著,“現代光學教程”, 四川大學出版社, 成都(1990).
    [57] Collings Peter J., and Michael Hird. Introduction to liquid crystals: chemistry and physics. CRC Press, 1997.
    [58] Marinelli M., and F. Mercuri. "Effects of fluctuations in the orientational order parameter in the cyanobiphenyl (n CB) homologous series." Physical Review E, 61.2 (2000): 1616.
    [59] 黃子強 編著,“液晶顯示原理”, 國防工業出版社, 北京(2006).
    [60] 王珍珍, 碩士論文,“混合聚亞醯胺配向膜調控液晶預傾角之研究及應用”,國立成功大學物理研究所 (1998).
    [61] Yoon HyungGuen, et al. "Homogeneous and homeotropic alignment of bent-core uniaxial and biaxial nematic liquid crystals." Soft Matter, 7.19 (2011): 8770-8775.
    [62] Berreman Dwight W. "Solid surface shape and the alignment of an adjacent nematic liquid crystal." Physical review letters, 28.26 (1972): 1683.
    [63] The Nobel Prize in Physics 1921. Nobel Foundation.
    [64] Petrova-Koch Vesselinka, Rudolf Hezel, and Adolf Goetzberger, eds. High-efficient low-cost photovoltaics: recent developments. Springer (2008).
    [65] Smith Willoughby. "Effect of light on selenium during the passage of an electric current." SPIE MILESTONE SERIES MS 56 (1992).
    [66] 施敏 著, 黃調元 譯, “半導體元件物理與製作技術”, 國立交通大學出版社 (2002).
    [67] 經濟部標準檢驗局 發行, “CNS台灣國家照度標準” (1987).
    [68] Palmer James M., and Lewis Carroll. "Radiometry and photometry FAQ." URL:https://employeepages.scad.edu/~kwitte/documents/Photometry_FAQ " (1999).
    [69] Yang Deng-Ke. Fundamentals of liquid crystal devices. John Wiley & Sons, 2014.
    [70] Odian George. Principles of polymerization. John Wiley & Sons, 2004.
    [71] 德鍵電子工業股份有限公司 發行, “CDS光敏電阻器產品目錄” (2017).
    [72] Chen Kuan-Ting, et al. "Development of an optically modulated piezoelectric sensor/actuator based on titanium oxide phthalocyanine thin film." Smart Materials and Structures, 21.11 (2012): 115025.
    [73] Zhou Shuquin, et al. "Photoconduction and application of oxotitanium phthalocyanine dual-layered thin films." Thin Solid Films, 375.1 (2000): 263-266.
    [74] Park Jaehong, Obadiah G. Reid, and Garry Rumbles. "Photoinduced Carrier Generation and Recombination Dynamics of a Trilayer Cascade Heterojunction Composed of Poly (3-hexylthiophene), Titanyl Phthalocyanine, and C60." The Journal of Physical Chemistry B, 119.24 (2015): 7729-7739.
    [75] Chang Wen-Chi, et al. "A photo-sensitive piezoelectric composite material of poly (vinylidene fluoride-trifluoroethylene) and titanium oxide phthalocyanine." Materials Chemistry and Physics, 149 (2015): 254-260.
    [76] Kim Young-Keun, et al. "Synthesis, characterization, and photovoltaic properties of soluble TiOPc derivatives." International journal of molecular sciences, 9.12 (2008): 2745-2756.
    [77] Lin PoHan, Y. H. Hsu, and C. K. Lee. "Universal lab on a smartphone: a research of TiOPc thin film as a light dependence electrode." SPIE BiOS. International Society for Optics and Photonics, 2014.
    [78] Li Yongfang. Organic optoelectronic materials. Berlin: Springer, 2015.
    [79] Shirakawa Hideki, et al. "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH)x." Journal of the Chemical Society, Chemical Communications 16 (1977): 578-580.
    [80] Rafique Saqib, et al. "Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer." Scientific reports, 7 (2017).
    [81] Sun Kuan, et al. "Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices." Journal of Materials Science: Materials in Electronics, 26.7 (2015): 4438-4462.
    [82] Pasha Apsar, et al. "Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films." Journal of Materials Science: Materials in Electronics, 27.8 (2016): 8332-8339.
    [83] Kim Yong Hyun, et al. "Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells." Advanced Functional Materials, 21.6 (2011): 1076-1081.
    [84] Tait Jeffrey G., et al. "Spray coated high-conductivity PEDOT: PSS transparent electrodes for stretchable and mechanically-robust organic solar cells." Solar Energy Materials and Solar Cells, 110 (2013): 98-106.
    [85] 陳奕達, 聚乙烯基咔唑薄膜液晶元件之光電特性之研究, 國立成功大學物理所碩士論文(2015).
    [86] Ren Hongwen, Su Xu, and Shin-Tson Wu. "Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time." Optics letters, 38.16 (2013): 3144-3147.

    下載圖示 校內:2020-07-05公開
    校外:2020-07-05公開
    QR CODE